U
    h                     @   s  d dl mZ ejdddZejdddZejdddZejdd	d
ZejdddZejdddZejdddZ	ejdddZ
ejdddZejdddZejdddZejdddZejdddZejdddZejddd Zejdd!d"Zejdd#d$Zejdd%d&Zejdd'd(Zejdd)d*Zejdd+d,Zejdd-d.Zejdd/d0Zejdd1d2Zejdd3d4Zejdd5d6Zejdd7d8Zejdd9d:Zejdd;d<Zejdd=d>Z ejdd?d@Z!ejddAdBZ"ejddCdDZ#ejddEdFZ$ejddGdHZ%ejddIdJZ&ejddKdLZ'ejddMdNZ(ejddOdPZ)ejddQdRZ*ejddSdTZ+ejddUdVZ,ejddWdXZ-ejddYdZZ.ejdd[d\Z/ejdd]d^Z0ejdd_d`Z1ejddadbZ2ejddcddZ3ejddedfZ4ejddgdhZ5ejddidjZ6ejddkdlZ7ejddmdnZ8ejddodpZ9ejddqdrZ:ejddsdtZ;ejddudvZ<ejddwdxZ=ejddydzZ>ejdd{d|Z?ejdd}d~Z@ejdddZAejdddZBejdddZCejdddZDejdddZEejdddZFejdddZGejdddZHejdddZIejdddZJejdddZKejdddZLejdddZMejdddZNejdddZOejdddZPejdddZQejdddZRejdddZSejdddZTejdddZUejdddZVejdddZWejdddZXejdddZYejdddZZejdddZ[ejdddZ\ejdddZ]ejdddZ^ejdddZ_ejdddZ`ejdddZaejdddZbejdddĄZcejdddƄZdejdddȄZeejdddʄZfejddd̄Zgejddd΄ZhejdddЄZiejddd҄ZjejdddԄZkejdddքZlejddd؄ZmejdddڄZnejddd܄ZoejdddބZpejdddZqejdddZrejdddZsejdddZtejdddZuejd ddZvejdddZwejdddZxejdddZyejdddZzejdddZ{ejdddZ|ejdddZ}ejdddZ~ejd	ddZejd
ddZejddd ZejdddZejdddZejdddZejdddZejdd	d
ZejdddZejdddZejdddZejdddZejdddZejdddZejdddZejdddZejdddZejdddZejddd Zejdd!d"Zejdd#d$Zejdd%d&Zejdd'd(Zejd d)d*Zejd!d+d,Zejd"d-d.Zejd#d/d0Zejd$d1d2Zejd%d3d4Zejd&d5d6Zejd'd7d8Zejd(d9d:Zejd)d;d<Zejd*d=d>Zejd+d?d@Zejd,dAdBZejd-dCdDZejd.dEdFZejd/dGdHZejd0dIdJZejd1dKdLZejd2dMdNZejd3dOdPZejd4dQdRZejd5dSdTZejd6dUdVZejd7dWdXZejd8dYdZZejd9d[d\Zejd:d]d^Zejd;d_d`Zejd<dadbZejd=dcddZejd>dedfZejd?dgdhZejd@didjZejdAdkdlZejdBdmdnZejdCdodpZejdDdqdrZejdEdsdtZejdFdudvZejdGdwdxZejdHdydzZejdId{d|ZejdJd}d~ZejdKddZejdLddZejdMddZejdNddZejdOddZejdPddZejdQddZdS (R      )coreNc                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )N int32Z__nv_clzint64Z
__nv_clzllTis_pure_builderr   Zextern_elementwiseZdtypearg0r    r   V/var/www/html/venv/lib/python3.8/site-packages/triton/language/extra/cuda/libdevice.pyclz   s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z	__nv_popcr   Z__nv_popcllTr   r	   r
   r   r   r   popc   s      
 
  r   c              	   C   sB   t jdd| ||gt dt dt dfdt dfid|dS )Nr   r   Z__nv_byte_permTr   r	   r   arg1arg2r   r   r   r   	byte_perm   s      r   c                 C   s   t jdd| |gt dt dfdt dft dt dfdt dft dt dfdt dft dt dfd	t dfid
|dS )Nr   r   Z
__nv_mulhiuint32Z__nv_umulhir   Z__nv_mul64hiuint64Z__nv_umul64hiTr   r	   r   r   r   r   r   r   mulhi   s            r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z
__nv_mul24r   Z__nv_umul24Tr   r	   r   r   r   r   mul24(   s         r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z	__nv_brevr   Z__nv_brevllTr   r	   r
   r   r   r   brev1   s      
 
  r   c                 C   sh   t jdd| ||gt dt dt dfdt dft dt dt dfdt dfid|dS )Nr   r   r   Z__nv_sadZ	__nv_usadTr   r	   r   r   r   r   sad:   s         r   c                 C   sp   t jdd| gt dfdt dft dfdt dft dfdt dft dfd	t dfid
|dS )Nr   r   Z__nv_absr   Z
__nv_llabsfp32Z
__nv_fabsffp64Z	__nv_fabsTr   r	   r
   r   r   r   absC   s       
 
 
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_floorfr   Z
__nv_floorTr   r	   r
   r   r   r   floorN   s      
 
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_rcp64hTr   r	   r
   r   r   r   rcp64hW   s    
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_rsqrtfr   Z
__nv_rsqrtTr   r	   r
   r   r   r   rsqrt^   s      
 
  r    c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z	__nv_ceilr   Z
__nv_ceilfTr   r	   r
   r   r   r   ceilg   s      
 
  r!   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_truncr   Z__nv_truncfTr   r	   r
   r   r   r   truncp   s      
 
  r"   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_exp2fr   Z	__nv_exp2Tr   r	   r
   r   r   r   exp2y   s      
 
  r#   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_saturatefTr   r	   r
   r   r   r   	saturatef   s    
  r$   c                 C   sh   t jdd| ||gt dt dt dfdt dft dt dt dfdt dfid|dS )Nr   r   Z__nv_fmaf_rnr   Z__nv_fma_rnTr   r	   r   r   r   r   fma_rn   s         r%   c                 C   sh   t jdd| ||gt dt dt dfdt dft dt dt dfdt dfid|dS )Nr   r   Z__nv_fmaf_rzr   Z__nv_fma_rzTr   r	   r   r   r   r   fma_rz   s         r&   c                 C   sh   t jdd| ||gt dt dt dfdt dft dt dt dfdt dfid|dS )Nr   r   Z__nv_fmaf_rdr   Z__nv_fma_rdTr   r	   r   r   r   r   fma_rd   s         r'   c                 C   sh   t jdd| ||gt dt dt dfdt dft dt dt dfdt dfid|dS )Nr   r   Z__nv_fmaf_rur   Z__nv_fma_ruTr   r	   r   r   r   r   fma_ru   s         r(   c              	   C   s8   t jdd| |gt dt dfdt dfid|dS )Nr   r   Z__nv_fast_fdividefTr   r	   r   r   r   r   fast_dividef   s      r)   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_fdiv_rnr   Z__nv_ddiv_rnTr   r	   r   r   r   r   div_rn   s         r*   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_fdiv_rzr   Z__nv_ddiv_rzTr   r	   r   r   r   r   div_rz   s         r+   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_fdiv_rdr   Z__nv_ddiv_rdTr   r	   r   r   r   r   div_rd   s         r,   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_fdiv_rur   Z__nv_ddiv_ruTr   r	   r   r   r   r   div_ru   s         r-   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_frcp_rnr   Z__nv_drcp_rnTr   r	   r
   r   r   r   rcp_rn   s      
 
  r.   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_frcp_rzr   Z__nv_drcp_rzTr   r	   r
   r   r   r   rcp_rz   s      
 
  r/   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_frcp_rdr   Z__nv_drcp_rdTr   r	   r
   r   r   r   rcp_rd   s      
 
  r0   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_frcp_rur   Z__nv_drcp_ruTr   r	   r
   r   r   r   rcp_ru   s      
 
  r1   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_fsqrt_rnr   Z__nv_dsqrt_rnTr   r	   r
   r   r   r   sqrt_rn   s      
 
  r2   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_fsqrt_rzr   Z__nv_dsqrt_rzTr   r	   r
   r   r   r   sqrt_rz  s      
 
  r3   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_fsqrt_rdr   Z__nv_dsqrt_rdTr   r	   r
   r   r   r   sqrt_rd  s      
 
  r4   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_fsqrt_rur   Z__nv_dsqrt_ruTr   r	   r
   r   r   r   sqrt_ru  s      
 
  r5   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_sqrtfr   Z	__nv_sqrtTr   r	   r
   r   r   r   sqrt   s      
 
  r6   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_dadd_rnr   Z__nv_fadd_rnTr   r	   r   r   r   r   add_rn)  s         r7   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_dadd_rzr   Z__nv_fadd_rzTr   r	   r   r   r   r   add_rz2  s         r8   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_dadd_rdr   Z__nv_fadd_rdTr   r	   r   r   r   r   add_rd;  s         r9   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_dadd_rur   Z__nv_fadd_ruTr   r	   r   r   r   r   add_ruD  s         r:   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_dmul_rnr   Z__nv_fmul_rnTr   r	   r   r   r   r   mul_rnM  s         r;   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_dmul_rzr   Z__nv_fmul_rzTr   r	   r   r   r   r   mul_rzV  s         r<   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_dmul_rdr   Z__nv_fmul_rdTr   r	   r   r   r   r   mul_rd_  s         r=   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_dmul_rur   Z__nv_fmul_ruTr   r	   r   r   r   r   mul_ruh  s$     	 r>   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2float_rnr   Tr   r	   r
   r   r   r   double2float_rnz  s    
  r?   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2float_rzr   Tr   r	   r
   r   r   r   double2float_rz  s    
  r@   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2float_rdr   Tr   r	   r
   r   r   r   double2float_rd  s    
  rA   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2float_rur   Tr   r	   r
   r   r   r   double2float_ru  s    
  rB   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2int_rnr   Tr   r	   r
   r   r   r   double2int_rn  s    
  rC   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2int_rzr   Tr   r	   r
   r   r   r   double2int_rz  s    
  rD   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2int_rdr   Tr   r	   r
   r   r   r   double2int_rd  s    
  rE   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2int_rur   Tr   r	   r
   r   r   r   double2int_ru  s    
  rF   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2uint_rnr   Tr   r	   r
   r   r   r   double2uint_rn  s    
  rG   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2uint_rzr   Tr   r	   r
   r   r   r   double2uint_rz  s    
  rH   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2uint_rdr   Tr   r	   r
   r   r   r   double2uint_rd  s    
  rI   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2uint_rur   Tr   r	   r
   r   r   r   double2uint_ru  s    
  rJ   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_int2double_rnr   Tr   r	   r
   r   r   r   int2double_rn  s    
  rK   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_uint2double_rnr   Tr   r	   r
   r   r   r   uint2double_rn  s    
  rL   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2int_rnr   Tr   r	   r
   r   r   r   float2int_rn  s    
  rM   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2int_rzr   Tr   r	   r
   r   r   r   float2int_rz  s    
  rN   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2int_rdr   Tr   r	   r
   r   r   r   float2int_rd  s    
  rO   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2int_rur   Tr   r	   r
   r   r   r   float2int_ru  s    
  rP   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2uint_rnr   Tr   r	   r
   r   r   r   float2uint_rn  s    
  rQ   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2uint_rzr   Tr   r	   r
   r   r   r   float2uint_rz  s    
  rR   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2uint_rdr   Tr   r	   r
   r   r   r   float2uint_rd  s    
  rS   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2uint_rur   Tr   r	   r
   r   r   r   float2uint_ru  s    
  rT   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_int2float_rnr   Tr   r	   r
   r   r   r   int2float_rn  s    
  rU   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_int2float_rzr   Tr   r	   r
   r   r   r   int2float_rz  s    
  rV   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_int2float_rdr   Tr   r	   r
   r   r   r   int2float_rd"  s    
  rW   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_int2float_rur   Tr   r	   r
   r   r   r   int2float_ru)  s    
  rX   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_uint2float_rnr   Tr   r	   r
   r   r   r   uint2float_rn0  s    
  rY   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_uint2float_rzr   Tr   r	   r
   r   r   r   uint2float_rz7  s    
  rZ   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_uint2float_rdr   Tr   r	   r
   r   r   r   uint2float_rd>  s    
  r[   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_uint2float_rur   Tr   r	   r
   r   r   r   uint2float_ruE  s    
  r\   c              	   C   s8   t jdd| |gt dt dfdt dfid|dS )Nr   r   Z__nv_hiloint2doubler   Tr   r	   r   r   r   r   hiloint2doubleL  s      r]   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2lointr   Tr   r	   r
   r   r   r   double2lointS  s    
  r^   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2hiintr   Tr   r	   r
   r   r   r   double2hiintZ  s    
  r_   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2ll_rnr   Tr   r	   r
   r   r   r   float2ll_rna  s    
  r`   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2ll_rzr   Tr   r	   r
   r   r   r   float2ll_rzh  s    
  ra   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2ll_rdr   Tr   r	   r
   r   r   r   float2ll_rdo  s    
  rb   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2ll_rur   Tr   r	   r
   r   r   r   float2ll_ruv  s    
  rc   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2ull_rnr   Tr   r	   r
   r   r   r   float2ull_rn}  s    
  rd   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2ull_rzr   Tr   r	   r
   r   r   r   float2ull_rz  s    
  re   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2ull_rdr   Tr   r	   r
   r   r   r   float2ull_rd  s    
  rf   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float2ull_rur   Tr   r	   r
   r   r   r   float2ull_ru  s    
  rg   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2ll_rnr   Tr   r	   r
   r   r   r   double2ll_rn  s    
  rh   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2ll_rzr   Tr   r	   r
   r   r   r   double2ll_rz  s    
  ri   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2ll_rdr   Tr   r	   r
   r   r   r   double2ll_rd  s    
  rj   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2ll_rur   Tr   r	   r
   r   r   r   double2ll_ru  s    
  rk   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2ull_rnr   Tr   r	   r
   r   r   r   double2ull_rn  s    
  rl   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2ull_rzr   Tr   r	   r
   r   r   r   double2ull_rz  s    
  rm   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2ull_rdr   Tr   r	   r
   r   r   r   double2ull_rd  s    
  rn   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double2ull_rur   Tr   r	   r
   r   r   r   double2ull_ru  s    
  ro   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ll2float_rnr   Tr   r	   r
   r   r   r   ll2float_rn  s    
  rp   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ll2float_rzr   Tr   r	   r
   r   r   r   ll2float_rz  s    
  rq   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ll2float_rdr   Tr   r	   r
   r   r   r   ll2float_rd  s    
  rr   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ll2float_rur   Tr   r	   r
   r   r   r   ll2float_ru  s    
  rs   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ull2float_rnr   Tr   r	   r
   r   r   r   ull2float_rn  s    
  rt   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ull2float_rzr   Tr   r	   r
   r   r   r   ull2float_rz  s    
  ru   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ull2float_rdr   Tr   r	   r
   r   r   r   ull2float_rd  s    
  rv   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ull2float_rur   Tr   r	   r
   r   r   r   ull2float_ru  s    
  rw   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ll2double_rnr   Tr   r	   r
   r   r   r   ll2double_rn	  s    
  rx   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ll2double_rzr   Tr   r	   r
   r   r   r   ll2double_rz  s    
  ry   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ll2double_rdr   Tr   r	   r
   r   r   r   ll2double_rd  s    
  rz   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ll2double_rur   Tr   r	   r
   r   r   r   ll2double_ru  s    
  r{   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ull2double_rnr   Tr   r	   r
   r   r   r   ull2double_rn%  s    
  r|   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ull2double_rzr   Tr   r	   r
   r   r   r   ull2double_rz,  s    
  r}   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ull2double_rdr   Tr   r	   r
   r   r   r   ull2double_rd3  s    
  r~   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_ull2double_rur   Tr   r	   r
   r   r   r   ull2double_ru:  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_int_as_floatr   Tr   r	   r
   r   r   r   int_as_floatA  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float_as_intr   Tr   r	   r
   r   r   r   float_as_intH  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_uint_as_floatr   Tr   r	   r
   r   r   r   uint_as_floatO  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_float_as_uintr   Tr   r	   r
   r   r   r   float_as_uintV  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_longlong_as_doubler   Tr   r	   r
   r   r   r   longlong_as_double]  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_double_as_longlongr   Tr   r	   r
   r   r   r   double_as_longlongd  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_fast_sinfTr   r	   r
   r   r   r   	fast_sinfk  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_fast_cosfTr   r	   r
   r   r   r   	fast_cosfr  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_fast_log2fTr   r	   r
   r   r   r   
fast_log2fy  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_fast_logfTr   r	   r
   r   r   r   	fast_logf  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_fast_expfTr   r	   r
   r   r   r   	fast_expf  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_fast_tanfTr   r	   r
   r   r   r   	fast_tanf  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_fast_exp10fTr   r	   r
   r   r   r   fast_exp10f  s    
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_fast_log10fTr   r	   r
   r   r   r   fast_log10f  s    
  r   c              	   C   s8   t jdd| |gt dt dfdt dfid|dS )Nr   r   Z__nv_fast_powfTr   r	   r   r   r   r   	fast_powf  s      r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z	__nv_haddr   Z
__nv_uhaddTr   r	   r   r   r   r   hadd  s         r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z
__nv_rhaddr   Z__nv_urhaddTr   r	   r   r   r   r   rhadd  s         r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_fsub_rnr   Z__nv_dsub_rnTr   r	   r   r   r   r   sub_rn  s         r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_fsub_rzr   Z__nv_dsub_rzTr   r	   r   r   r   r   sub_rz  s         r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_fsub_rdr   Z__nv_dsub_rdTr   r	   r   r   r   r   sub_rd  s         r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_fsub_rur   Z__nv_dsub_ruTr   r	   r   r   r   r   sub_ru  s         r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_frsqrt_rnTr   r	   r
   r   r   r   rsqrt_rn  s    
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_ffsr   Z
__nv_ffsllTr   r	   r
   r   r   r   ffs  s     
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_rintfr   Z	__nv_rintTr   r	   r
   r   r   r   rint  s     
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )	Nr   r   Z__nv_llrintfr   r   Z__nv_llrintTr   r	   r
   r   r   r   llrint  s     
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_nearbyintfr   Z__nv_nearbyintTr   r	   r
   r   r   r   	nearbyint
  s     
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )	Nr   r   Z__nv_isnanfr   r   Z__nv_isnandTr   r	   r
   r   r   r   isnan  s     
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )	Nr   r   Z__nv_signbitfr   r   Z__nv_signbitdTr   r	   r
   r   r   r   signbit   s     
 
  r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_copysignfr   Z__nv_copysignTr   r	   r   r   r   r   copysign+  s         r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_finitefr   Tr   r	   r
   r   r   r   finitef4  s    
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )	Nr   r   Z__nv_isinffr   r   Z__nv_isinfdTr   r	   r
   r   r   r   isinf;  s      
 
  r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_nextafterfr   Z__nv_nextafterTr   r	   r   r   r   r   	nextafterD  s         r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z	__nv_sinfr   Z__nv_sinTr   r	   r
   r   r   r   sinM  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z	__nv_cosfr   Z__nv_cosTr   r	   r
   r   r   r   cosV  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_sinpifr   Z
__nv_sinpiTr   r	   r
   r   r   r   sinpi_  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_cospifr   Z
__nv_cospiTr   r	   r
   r   r   r   cospih  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z	__nv_tanfr   Z__nv_tanTr   r	   r
   r   r   r   tanq  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_log2fr   Z	__nv_log2Tr   r	   r
   r   r   r   log2z  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z	__nv_expfr   Z__nv_expTr   r	   r
   r   r   r   exp  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_exp10fr   Z
__nv_exp10Tr   r	   r
   r   r   r   exp10  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_coshfr   Z	__nv_coshTr   r	   r
   r   r   r   cosh  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_sinhfr   Z	__nv_sinhTr   r	   r
   r   r   r   sinh  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_tanhfr   Z	__nv_tanhTr   r	   r
   r   r   r   tanh  s      
 
  r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_atan2fr   Z
__nv_atan2Tr   r	   r   r   r   r   atan2  s         r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_atanfr   Z	__nv_atanTr   r	   r
   r   r   r   atan  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_asinfr   Z	__nv_asinTr   r	   r
   r   r   r   asin  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_acosfr   Z	__nv_acosTr   r	   r
   r   r   r   acos  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z	__nv_logfr   Z__nv_logTr   r	   r
   r   r   r   log  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_log10fr   Z
__nv_log10Tr   r	   r
   r   r   r   log10  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_log1pfr   Z
__nv_log1pTr   r	   r
   r   r   r   log1p  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_acoshfr   Z
__nv_acoshTr   r	   r
   r   r   r   acosh  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_asinhfr   Z
__nv_asinhTr   r	   r
   r   r   r   asinh  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_atanhfr   Z
__nv_atanhTr   r	   r
   r   r   r   atanh  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_expm1fr   Z
__nv_expm1Tr   r	   r
   r   r   r   expm1
  s      
 
  r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_hypotfr   Z
__nv_hypotTr   r	   r   r   r   r   hypot  s         r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_rhypotfr   Z__nv_rhypotTr   r	   r   r   r   r   rhypot  s         r   c                 C   sh   t jdd| ||gt dt dt dfdt dft dt dt dfdt dfid|dS )Nr   r   Z__nv_norm3dfr   Z__nv_norm3dTr   r	   r   r   r   r   norm3d%  s         r   c                 C   sh   t jdd| ||gt dt dt dfdt dft dt dt dfdt dfid|dS )Nr   r   Z__nv_rnorm3dfr   Z__nv_rnorm3dTr   r	   r   r   r   r   rnorm3d.  s         r   c                 C   sz   t jdd| |||gt dt dt dt dfdt dft dt dt dt dfdt dfid|dS )Nr   r   Z__nv_norm4dfr   Z__nv_norm4dTr   r	   r   r   r   Zarg3r   r   r   r   norm4d7  s      
"" r   c                 C   sz   t jdd| |||gt dt dt dt dfdt dft dt dt dt dfdt dfid|dS )Nr   r   Z__nv_rnorm4dfr   Z__nv_rnorm4dTr   r	   r   r   r   r   rnorm4dB  s      
"" r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_cbrtfr   Z	__nv_cbrtTr   r	   r
   r   r   r   cbrtM  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_rcbrtfr   Z
__nv_rcbrtTr   r	   r
   r   r   r   rcbrtV  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_j0fr   Z__nv_j0Tr   r	   r
   r   r   r   j0_  s    
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_j1fr   Z__nv_j1Tr   r	   r
   r   r   r   j1g  s    
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_y0fr   Z__nv_y0Tr   r	   r
   r   r   r   y0o  s    
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_y1fr   Z__nv_y1Tr   r	   r
   r   r   r   y1w  s    
 
  r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )	Nr   r   r   Z__nv_ynfr   Z__nv_ynTr   r	   r   r   r   r   yn  s         r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )	Nr   r   r   Z__nv_jnfr   Z__nv_jnTr   r	   r   r   r   r   jn  s         r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_cyl_bessel_i0fr   Z__nv_cyl_bessel_i0Tr   r	   r
   r   r   r   cyl_bessel_i0  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_cyl_bessel_i1fr   Z__nv_cyl_bessel_i1Tr   r	   r
   r   r   r   cyl_bessel_i1  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z	__nv_erffr   Z__nv_erfTr   r	   r
   r   r   r   erf  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_erfinvfr   Z__nv_erfinvTr   r	   r
   r   r   r   erfinv  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_erfcfr   Z	__nv_erfcTr   r	   r
   r   r   r   erfc  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_erfcxfr   Z
__nv_erfcxTr   r	   r
   r   r   r   erfcx  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_erfcinvfr   Z__nv_erfcinvTr   r	   r
   r   r   r   erfcinv  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_normcdfinvfr   Z__nv_normcdfinvTr   r	   r
   r   r   r   
normcdfinv  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_normcdffr   Z__nv_normcdfTr   r	   r
   r   r   r   normcdf  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_lgammafr   Z__nv_lgammaTr   r	   r
   r   r   r   lgamma  s      
 
  r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )	Nr   r   r   Z__nv_ldexpfr   Z
__nv_ldexpTr   r	   r   r   r   r   ldexp  s         r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )	Nr   r   r   Z__nv_scalbnfr   Z__nv_scalbnTr   r	   r   r   r   r   scalbn  s         r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z
__nv_fmodfr   Z	__nv_fmodTr   r	   r   r   r   r   fmod  s         r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z__nv_remainderfr   Z__nv_remainderTr   r	   r   r   r   r   	remainder  s         r   c                 C   sh   t jdd| ||gt dt dt dfdt dft dt dt dfdt dfid|dS )Nr   r   Z	__nv_fmafr   Z__nv_fmaTr   r	   r   r   r   r   fma  s         r   c                 C   s   t jdd| |gt dt dfdt dft dt dfdt dft dt dfdt dft dt dfdt dfid	|d
S )Nr   r   r   Z
__nv_powifr   Z	__nv_powiZ	__nv_powfZ__nv_powTr   r	   r   r   r   r   pow  s            r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_tgammafr   Z__nv_tgammaTr   r	   r
   r   r   r   tgamma#  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z__nv_roundfr   Z
__nv_roundTr   r	   r
   r   r   r   round,  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )	Nr   r   Z__nv_llroundfr   r   Z__nv_llroundTr   r	   r
   r   r   r   llround5  s      
 
  r   c                 C   sV   t jdd| |gt dt dfdt dft dt dfdt dfid|dS )Nr   r   Z
__nv_fdimfr   Z	__nv_fdimTr   r	   r   r   r   r   fdim>  s         r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )	Nr   r   Z__nv_ilogbfr   r   Z
__nv_ilogbTr   r	   r
   r   r   r   ilogbG  s      
 
  r   c                 C   sD   t jdd| gt dfdt dft dfdt dfid|dS )Nr   r   Z
__nv_logbfr   Z	__nv_logbTr   r	   r
   r   r   r   logbP  s      
 
  r   c              	   C   s.   t jdd| gt dfdt dfid|dS )Nr   r   Z__nv_isfinitedr   Tr   r	   r
   r   r   r   	isfinitedY  s    
  r   )N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)N)Ztriton.languager   Zexternr   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   rL   rM   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   rY   rZ   r[   r\   r]   r^   r_   r`   ra   rb   rc   rd   re   rf   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   rq   rr   rs   rt   ru   rv   rw   rx   ry   rz   r{   r|   r}   r~   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   <module>   s  










