U
    h                     @  sP   d dl mZ d dlmZmZmZ d dlZd dlZddl	m
Z
 G dd de
ZdS )    )annotations)AnyOptionalUnionN   )TVTensorc                   @  s0   e Zd ZdZddddddddd dd	d
ZdS )Maska  :class:`torch.Tensor` subclass for segmentation and detection masks with shape ``[..., H, W]``.

    Args:
        data (tensor-like, PIL.Image.Image): Any data that can be turned into a tensor with :func:`torch.as_tensor` as
            well as PIL images.
        dtype (torch.dtype, optional): Desired data type. If omitted, will be inferred from
            ``data``.
        device (torch.device, optional): Desired device. If omitted and ``data`` is a
            :class:`torch.Tensor`, the device is taken from it. Otherwise, the mask is constructed on the CPU.
        requires_grad (bool, optional): Whether autograd should record operations. If omitted and
            ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``.
    Ndtypedevicerequires_gradr   zOptional[torch.dtype]z'Optional[Union[torch.device, str, int]]zOptional[bool])datar
   r   r   returnc                C  s@   t |tjjr$ddlm} ||}| j||||d}|| S )Nr   )
functionalr	   )
isinstancePILZImageZtorchvision.transforms.v2r   Zpil_to_tensorZ
_to_tensorZas_subclass)clsr   r
   r   r   FZtensor r   N/var/www/html/venv/lib/python3.8/site-packages/torchvision/tv_tensors/_mask.py__new__   s
    
zMask.__new__)__name__
__module____qualname____doc__r   r   r   r   r   r      s
   r   )
__future__r   typingr   r   r   Z	PIL.Imager   ZtorchZ
_tv_tensorr   r   r   r   r   r   <module>   s
   