U
    h.                  	   @   s  d dl mZmZmZmZmZ d dlZd dlZd dlZd dlm	Z	m
Z
 d dlmZ ddlmZ ddlmZ ejje
ee
 e
d	d
dZd%eeeeedddZG dd dZee
 e
dddZe
ee edddZejjee
 eeeef  eeeee ef dddZejjeee
f ee ee
 dddZejjee
 ee
 ee eeee  ee e
d d!d"ZG d#d$ d$e	jZ dS )&    )DictListOptionalTupleUnionN)nnTensorbox_area   )_log_api_usage_once   )	roi_align)levelsunmerged_resultsreturnc              	   C   s   |d }|j |j }}tj| d|d|d|df||d}tt|D ]h}t| |kd dddd}|	|d|| d|| d|| d}|
d||| }qR|S )Nr   r   r      dtypedevice)r   r   torchzerossizerangelenwhereviewexpandZscatter)r   r   Zfirst_resultr   r   reslevelindex r"   I/var/www/html/venv/lib/python3.8/site-packages/torchvision/ops/poolers.py_onnx_merge_levels   s"    "  r$         ư>k_mink_maxcanonical_scalecanonical_levelepsc                 C   s   t | ||||S N)LevelMapperr(   r"   r"   r#   initLevelMapper%   s    r0   c                   @   s<   e Zd ZdZdeeeeedddZee edd	d
Z	dS )r/   zDetermine which FPN level each RoI in a set of RoIs should map to based
    on the heuristic in the FPN paper.

    Args:
        k_min (int)
        k_max (int)
        canonical_scale (int)
        canonical_level (int)
        eps (float)
    r%   r&   r'   r(   c                 C   s"   || _ || _|| _|| _|| _d S r.   )r)   r*   s0lvl0r-   )selfr)   r*   r+   r,   r-   r"   r"   r#   __init__;   s
    zLevelMapper.__init__)boxlistsr   c                 C   sv   t t dd |D }t | jt || j  t j| j|j	d }t j
|| j| jd}|t j| j t jS )z<
        Args:
            boxlists (list[BoxList])
        c                 S   s   g | ]}t |qS r"   r	   ).0Zboxlistr"   r"   r#   
<listcomp>O   s     z(LevelMapper.__call__.<locals>.<listcomp>r   )minmax)r   sqrtcatfloorr2   log2r1   tensorr-   r   clampr)   r*   toZint64)r3   r5   sZtarget_lvlsr"   r"   r#   __call__I   s    .zLevelMapper.__call__N)r%   r&   r'   )
__name__
__module____qualname____doc__intfloatr4   r   r   rC   r"   r"   r"   r#   r/   /   s      r/   )boxesr   c                    sT   t j| dd}|j|j  t j fddt| D dd}t j||gdd}|S )Nr   )dimc              	      s6   g | ].\}}t j|d d d df |t j dqS )Nr   )r   Zlayoutr   )r   Z	full_likeZstrided)r6   ibr   r   r"   r#   r7   [   s     z*_convert_to_roi_format.<locals>.<listcomp>r   )r   r<   r   r   	enumerate)rJ   Zconcat_boxesZidsroisr"   rN   r#   _convert_to_roi_formatW   s    rQ   )featureoriginal_sizer   c                 C   sb   | j dd  }g }t||D ]<\}}t|t| }dtt|   }|| q|d S )Nr   r   )shapeziprI   r   r?   r>   roundappend)rR   rS   r   Zpossible_scaless1s2Zapprox_scalescaler"   r"   r#   _infer_scaleb   s    r\   )featuresimage_shapesr+   r,   r   c                    s   |st dd}d}|D ] }t|d |}t|d |}q||f  fdd| D }ttj|d tjd  }ttj|d tjd  }	tt|t|	||d}
||
fS )	Nzimages list should not be emptyr   r   c                    s   g | ]}t | qS r"   )r\   )r6   ZfeatZoriginal_input_shaper"   r#   r7   z   s     z!_setup_scales.<locals>.<listcomp>r8   r   r+   r,   )	
ValueErrorr:   r   r>   r?   Zfloat32itemr0   rH   )r]   r^   r+   r,   Zmax_xZmax_yrU   scalesZlvl_minZlvl_max
map_levelsr"   r_   r#   _setup_scalesm   s$      re   )xfeatmap_namesr   c                 C   s,   g }|   D ]\}}||kr|| q|S r.   )itemsrX   )rf   rg   
x_filteredkvr"   r"   r#   _filter_input   s
    rl   )ri   rJ   output_sizesampling_ratiorc   mapperr   c                 C   s$  |dks|dkrt dt| }t|}|dkrJt| d |||d |dS ||}t|}	| d jd }
| d j| d j }}tj|	|
f| ||d}g }t	t
| |D ]b\}\}}t||kd }|| }t|||||d}t r||| q||j||< qt r t||}|S )a  
    Args:
        x_filtered (List[Tensor]): List of input tensors.
        boxes (List[Tensor[N, 4]]): boxes to be used to perform the pooling operation, in
            (x1, y1, x2, y2) format and in the image reference size, not the feature map
            reference. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
        output_size (Union[List[Tuple[int, int]], List[int]]): size of the output
        sampling_ratio (int): sampling ratio for ROIAlign
        scales (Optional[List[float]]): If None, scales will be automatically inferred. Default value is None.
        mapper (Optional[LevelMapper]): If none, mapper will be automatically inferred. Default value is None.
    Returns:
        result (Tensor)
    Nz$scales and mapper should not be Noner   r   )rm   Zspatial_scalern   r   )ra   r   rQ   r   rU   r   r   r   r   rO   rV   r   torchvisionZ_is_tracingrX   rA   r$   )ri   rJ   rm   rn   rc   ro   Z
num_levelsrP   r   Znum_roisZnum_channelsr   r   resultZtracing_resultsr    Zper_level_featurer[   Zidx_in_levelZrois_per_levelZresult_idx_in_levelr"   r"   r#   _multiscale_roi_align   sT    
	

rr   c                       s   e Zd ZdZeee  ee dZdddee	 e
eee ee f eeed fddZee	ef ee eeeef  ed	d
dZe	dddZ  ZS )MultiScaleRoIAligna{  
    Multi-scale RoIAlign pooling, which is useful for detection with or without FPN.

    It infers the scale of the pooling via the heuristics specified in eq. 1
    of the `Feature Pyramid Network paper <https://arxiv.org/abs/1612.03144>`_.
    They keyword-only parameters ``canonical_scale`` and ``canonical_level``
    correspond respectively to ``224`` and ``k0=4`` in eq. 1, and
    have the following meaning: ``canonical_level`` is the target level of the pyramid from
    which to pool a region of interest with ``w x h = canonical_scale x canonical_scale``.

    Args:
        featmap_names (List[str]): the names of the feature maps that will be used
            for the pooling.
        output_size (List[Tuple[int, int]] or List[int]): output size for the pooled region
        sampling_ratio (int): sampling ratio for ROIAlign
        canonical_scale (int, optional): canonical_scale for LevelMapper
        canonical_level (int, optional): canonical_level for LevelMapper

    Examples::

        >>> m = torchvision.ops.MultiScaleRoIAlign(['feat1', 'feat3'], 3, 2)
        >>> i = OrderedDict()
        >>> i['feat1'] = torch.rand(1, 5, 64, 64)
        >>> i['feat2'] = torch.rand(1, 5, 32, 32)  # this feature won't be used in the pooling
        >>> i['feat3'] = torch.rand(1, 5, 16, 16)
        >>> # create some random bounding boxes
        >>> boxes = torch.rand(6, 4) * 256; boxes[:, 2:] += boxes[:, :2]
        >>> # original image size, before computing the feature maps
        >>> image_sizes = [(512, 512)]
        >>> output = m(i, [boxes], image_sizes)
        >>> print(output.shape)
        >>> torch.Size([6, 5, 3, 3])

    )rc   rd   r%   r&   r`   )rg   rm   rn   r+   r,   c                   sV   t    t|  t|tr$||f}|| _|| _t|| _d | _	d | _
|| _|| _d S r.   )superr4   r   
isinstancerH   rg   rn   tuplerm   rc   rd   r+   r,   )r3   rg   rm   rn   r+   r,   	__class__r"   r#   r4     s    	


zMultiScaleRoIAlign.__init__)rf   rJ   r^   r   c                 C   sT   t || j}| jdks | jdkr:t||| j| j\| _| _t||| j| j	| j| jS )a  
        Args:
            x (OrderedDict[Tensor]): feature maps for each level. They are assumed to have
                all the same number of channels, but they can have different sizes.
            boxes (List[Tensor[N, 4]]): boxes to be used to perform the pooling operation, in
                (x1, y1, x2, y2) format and in the image reference size, not the feature map
                reference. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
            image_shapes (List[Tuple[height, width]]): the sizes of each image before they
                have been fed to a CNN to obtain feature maps. This allows us to infer the
                scale factor for each one of the levels to be pooled.
        Returns:
            result (Tensor)
        N)
rl   rg   rc   rd   re   r+   r,   rr   rm   rn   )r3   rf   rJ   r^   ri   r"   r"   r#   forward!  s        zMultiScaleRoIAlign.forward)r   c                 C   s&   | j j d| j d| j d| j dS )Nz(featmap_names=z, output_size=z, sampling_ratio=))rx   rD   rg   rm   rn   )r3   r"   r"   r#   __repr__C  s    $zMultiScaleRoIAlign.__repr__)rD   rE   rF   rG   r   r   rI   r/   __annotations__strr   rH   r   r4   r   r   ry   r{   __classcell__r"   r"   rw   r#   rs      s"   #
"rs   )r%   r&   r'   )!typingr   r   r   r   r   r   Ztorch.fxrp   r   r   Ztorchvision.ops.boxesr
   utilsr   r   ZjitZunusedr$   rH   rI   r0   r/   rQ   r\   Zfxwrapre   r}   rl   rr   Modulers   r"   r"   r"   r#   <module>   sR      
(   $
S