U
    h:                     @   s  d dl mZ d dlmZmZmZ d dlZd dlmZ d dlm	Z
 ddlmZ dd	lmZmZmZ dd
lmZ ddlmZmZmZ ddlmZmZmZ ddlmZmZmZmZm Z  ddlm!Z! ddl"m#Z# dddddddgZ$G dd de!Z%G dd dej&Z'G dd dej&Z(G dd dej&Z)G dd  d ej*Z+ee,ee- e%d!d"d#Z.ed$d%d&Z/G d'd deZ0G d(d deZ1G d)d deZ2ee,ee- e%d!d*d+Z3e ed,e0j4fd-e j5fd.dd/dde j5d0ee0 e-ee, ee- ee  ee%d1d2dZ6e ed,e1j4fd-ej5fd.dd/ddej5d0ee1 e-ee, ee- ee ee%d1d3dZ7e ed,e2j4fd-ej5fd.dd/ddej5d0ee2 e-ee, ee- ee ee%d1d4dZ8dS )5    )partial)AnyOptionalSequenceN)nn)
functional   )SemanticSegmentation   )register_modelWeightsWeightsEnum)_VOC_CATEGORIES)_ovewrite_value_paramhandle_legacy_interfaceIntermediateLayerGetter)mobilenet_v3_largeMobileNet_V3_Large_WeightsMobileNetV3)ResNet	resnet101ResNet101_Weightsresnet50ResNet50_Weights   )_SimpleSegmentationModel)FCNHead	DeepLabV3DeepLabV3_ResNet50_WeightsDeepLabV3_ResNet101_Weights$DeepLabV3_MobileNet_V3_Large_Weightsdeeplabv3_mobilenet_v3_largedeeplabv3_resnet50deeplabv3_resnet101c                   @   s   e Zd ZdZdS )r   a  
    Implements DeepLabV3 model from
    `"Rethinking Atrous Convolution for Semantic Image Segmentation"
    <https://arxiv.org/abs/1706.05587>`_.

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            The backbone should return an OrderedDict[Tensor], with the key being
            "out" for the last feature map used, and "aux" if an auxiliary classifier
            is used.
        classifier (nn.Module): module that takes the "out" element returned from
            the backbone and returns a dense prediction.
        aux_classifier (nn.Module, optional): auxiliary classifier used during training
    N)__name__
__module____qualname____doc__ r(   r(   [/var/www/html/venv/lib/python3.8/site-packages/torchvision/models/segmentation/deeplabv3.pyr      s   c                       s.   e Zd Zdeeee dd fddZ  ZS )DeepLabHead      $   N)in_channelsnum_classesatrous_ratesreturnc                    sB   t  t||tjddddddtdt td|d d S )N   r   r   F)paddingbias)super__init__ASPPr   Conv2dBatchNorm2dReLU)selfr/   r0   r1   	__class__r(   r)   r7   1   s    zDeepLabHead.__init__)r+   )r$   r%   r&   intr   r7   __classcell__r(   r(   r=   r)   r*   0   s   r*   c                       s(   e Zd Zeeedd fddZ  ZS )ASPPConvN)r/   out_channelsdilationr2   c                    s6   t j||d||ddt |t  g}t j|  d S )Nr   F)r4   rC   r5   )r   r9   r:   r;   r6   r7   )r<   r/   rB   rC   modulesr=   r(   r)   r7   <   s
    zASPPConv.__init__)r$   r%   r&   r?   r7   r@   r(   r(   r=   r)   rA   ;   s   rA   c                       s:   e Zd Zeedd fddZejejdddZ  ZS )ASPPPoolingN)r/   rB   r2   c              	      s4   t  tdtj||dddt|t  d S )Nr   Fr5   )r6   r7   r   ZAdaptiveAvgPool2dr9   r:   r;   )r<   r/   rB   r=   r(   r)   r7   F   s    zASPPPooling.__init__xr2   c                 C   s2   |j dd  }| D ]}||}qtj||dddS )NZbilinearF)sizemodeZalign_corners)shapeFZinterpolate)r<   rH   rJ   modr(   r(   r)   forwardN   s    
zASPPPooling.forward)	r$   r%   r&   r?   r7   torchTensorrO   r@   r(   r(   r=   r)   rE   E   s   rE   c                       sB   e Zd Zd	eee edd fddZejejdddZ  Z	S )
r8   r3   N)r/   r1   rB   r2   c              
      s   t    g }|ttj||dddt|t  t|}|D ]}|t	||| qF|t
|| t|| _ttjt| j| |dddt|t td| _d S )Nr   FrF   g      ?)r6   r7   appendr   
Sequentialr9   r:   r;   tuplerA   rE   Z
ModuleListconvslenZDropoutproject)r<   r/   r1   rB   rD   ZratesZrater=   r(   r)   r7   V   s     
$zASPP.__init__rG   c                 C   s6   g }| j D ]}||| q
tj|dd}| |S )Nr   )dim)rU   rR   rP   catrW   )r<   rH   Z_resconvresr(   r(   r)   rO   l   s
    
zASPP.forward)r3   )
r$   r%   r&   r?   r   r7   rP   rQ   rO   r@   r(   r(   r=   r)   r8   U   s   r8   )backboner0   auxr2   c                 C   sH   ddi}|rd|d< t | |d} |r.td|nd }td|}t| ||S )NZlayer4outr]   Zlayer3return_layersi   i   )r   r   r*   r   )r\   r0   r]   r`   aux_classifier
classifierr(   r(   r)   _deeplabv3_resnett   s    
rc   )r   r   z
        These weights were trained on a subset of COCO, using only the 20 categories that are present in the Pascal VOC
        dataset.
    )
categoriesZmin_sizeZ_docsc                
   @   s@   e Zd Zedeeddedddddd	id
dddZeZdS )r   zHhttps://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth  Zresize_sizeijzVhttps://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet50COCO-val2017-VOC-labelsgP@皙W@ZmiouZ	pixel_accgvWf@gGzd@Z
num_paramsZrecipeZ_metricsZ_ops
_file_sizeurlZ
transformsmetaN	r$   r%   r&   r   r   r	   _COMMON_METACOCO_WITH_VOC_LABELS_V1DEFAULTr(   r(   r(   r)   r      s    
c                
   @   s@   e Zd Zedeeddedddddd	id
dddZeZdS )r   zIhttps://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pthre   rf   ijzQhttps://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet101rg   gP@rh   ri   gS+p@gm&m@rj   rl   Nro   r(   r(   r(   r)   r      s    
c                
   @   s@   e Zd Zedeeddedddddd	id
dddZeZdS )r    zMhttps://download.pytorch.org/models/deeplabv3_mobilenet_v3_large-fc3c493d.pthre   rf   iPK z`https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_mobilenet_v3_largerg   gfffff&N@gV@ri   gCl$@gJ+&E@rj   rl   Nro   r(   r(   r(   r)   r       s    
c                 C   s   | j } dgdd t| D  t| d g }|d }| | j}|d }| | j}t|di}|rld|t|< t| |d	} |rt||nd }	t||}
t| |
|	S )
Nr   c                 S   s    g | ]\}}t |d dr|qS )Z_is_cnF)getattr).0ibr(   r(   r)   
<listcomp>   s      z*_deeplabv3_mobilenetv3.<locals>.<listcomp>r   r^   r]   r_   )	features	enumeraterV   rB   strr   r   r*   r   )r\   r0   r]   Zstage_indicesZout_posZout_inplanesZaux_posZaux_inplanesr`   ra   rb   r(   r(   r)   _deeplabv3_mobilenetv3   s    &


r}   Z
pretrainedZpretrained_backbone)weightsweights_backboneT)r~   progressr0   aux_lossr   )r~   r   r0   r   r   kwargsr2   c                 K   s   t | } t|}| dk	rDd}td|t| jd }td|d}n|dkrPd}t|dddgd}t|||}| dk	r|| j	|dd	 |S )
ad  Constructs a DeepLabV3 model with a ResNet-50 backbone.

    .. betastatus:: segmentation module

    Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.

    Args:
        weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        aux_loss (bool, optional): If True, it uses an auxiliary loss
        weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the
            backbone
        **kwargs: unused

    .. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet50_Weights
        :members:
    Nr0   rd   r   T   Fr~   Zreplace_stride_with_dilationr   Z
check_hash)
r   verifyr   r   rV   rn   r   rc   load_state_dictget_state_dictr~   r   r0   r   r   r   r\   modelr(   r(   r)   r"      s    %

c                 K   s   t | } t|}| dk	rDd}td|t| jd }td|d}n|dkrPd}t|dddgd}t|||}| dk	r|| j	|dd	 |S )
ai  Constructs a DeepLabV3 model with a ResNet-101 backbone.

    .. betastatus:: segmentation module

    Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.

    Args:
        weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        aux_loss (bool, optional): If True, it uses an auxiliary loss
        weights_backbone (:class:`~torchvision.models.ResNet101_Weights`, optional): The pretrained weights for the
            backbone
        **kwargs: unused

    .. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet101_Weights
        :members:
    Nr0   rd   r   Tr   Fr   r   )
r   r   r   r   rV   rn   r   rc   r   r   r   r(   r(   r)   r#     s    %

c                 K   s   t | } t|}| dk	rDd}td|t| jd }td|d}n|dkrPd}t|dd}t|||}| dk	r|| j	|dd |S )	ak  Constructs a DeepLabV3 model with a MobileNetV3-Large backbone.

    Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.

    Args:
        weights (:class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        aux_loss (bool, optional): If True, it uses an auxiliary loss
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights
            for the backbone
        **kwargs: unused

    .. autoclass:: torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights
        :members:
    Nr0   rd   r   Tr   )r~   Zdilatedr   )
r    r   r   r   rV   rn   r   r}   r   r   r   r(   r(   r)   r!   S  s    #

)9	functoolsr   typingr   r   r   rP   r   Ztorch.nnr   rM   Ztransforms._presetsr	   Z_apir   r   r   _metar   Z_utilsr   r   r   Zmobilenetv3r   r   r   Zresnetr   r   r   r   r   r   Zfcnr   __all__r   rS   r*   rA   rE   Moduler8   r?   boolrc   rp   r   r   r    r}   rq   ZIMAGENET1K_V1r"   r#   r!   r(   r(   r(   r)   <module>   s   
 
33