U
    hA                  	   @   s  d dl Z d dlmZ d dlmZ d dlmZmZmZm	Z	 d dl
Z
d dlmZ d dlm  mZ d dlm  mZ d dl
mZ ddlmZ ddlmZ d	d
lmZmZmZ d	dlmZ d	dlmZm Z  dddddddddg	Z!G dd dej"Z#G dd dej$Z%G dd dej&Z'G dd dej"Z(ej"ee)ddddZ*e+e	e+e+e+e+f e+ee e)ee(d d!d"Z,d#ed$d%d&Z-G d'd deZ.G d(d deZ/G d)d deZ0G d*d deZ1e e d+e.j2fd,dd-d.ee. e)ee(d/d0dZ3e e d+e/j2fd,dd-d.ee/ e)ee(d/d1dZ4e e d+e0j2fd,dd-d.ee0 e)ee(d/d2dZ5e e d+e1j2fd,dd-d.ee1 e)ee(d/d3dZ6dS )4    N)OrderedDict)partial)AnyListOptionalTuple)Tensor   )ImageClassification)_log_api_usage_once   )register_modelWeightsWeightsEnum)_IMAGENET_CATEGORIES)_ovewrite_named_paramhandle_legacy_interfaceDenseNetDenseNet121_WeightsDenseNet161_WeightsDenseNet169_WeightsDenseNet201_Weightsdensenet121densenet161densenet169densenet201c                       s   e Zd Zdeeeeedd fddZee edddZ	ee ed	d
dZ
ejjee ed	ddZejjee ed	ddZejjeed	ddZeed	ddZ  ZS )_DenseLayerFN)num_input_featuresgrowth_ratebn_size	drop_ratememory_efficientreturnc                    s   t    t|| _tjdd| _tj||| dddd| _t|| | _	tjdd| _
tj|| |ddddd| _t|| _|| _d S )NTZinplacer   Fkernel_sizestridebias   r%   r&   paddingr'   )super__init__nnBatchNorm2dnorm1ReLUrelu1Conv2dconv1norm2relu2conv2floatr    r!   )selfr   r   r   r    r!   	__class__ M/var/www/html/venv/lib/python3.8/site-packages/torchvision/models/densenet.pyr,       s    

z_DenseLayer.__init__)inputsr"   c                 C   s&   t |d}| | | |}|S Nr   )torchcatr3   r1   r/   )r8   r=   Zconcated_featuresbottleneck_outputr;   r;   r<   bn_function/   s    z_DenseLayer.bn_function)inputr"   c                 C   s   |D ]}|j r dS qdS )NTF)Zrequires_grad)r8   rC   Ztensorr;   r;   r<   any_requires_grad5   s    z_DenseLayer.any_requires_gradc                    s"    fdd}t j|f|ddiS )Nc                     s
     | S N)rB   )r=   r8   r;   r<   closure=   s    z7_DenseLayer.call_checkpoint_bottleneck.<locals>.closureZuse_reentrantF)cp
checkpoint)r8   rC   rG   r;   rF   r<   call_checkpoint_bottleneck;   s    z&_DenseLayer.call_checkpoint_bottleneckc                 C   s   d S rE   r;   r8   rC   r;   r;   r<   forwardB   s    z_DenseLayer.forwardc                 C   s   d S rE   r;   rK   r;   r;   r<   rL   F   s    c                 C   s   t |tr|g}n|}| jrD| |rDtj r8td| |}n
| 	|}| 
| | |}| jdkrtj|| j| jd}|S )Nz%Memory Efficient not supported in JITr   )ptraining)
isinstancer   r!   rD   r?   jitZis_scripting	ExceptionrJ   rB   r6   r5   r4   r    FZdropoutrN   )r8   rC   Zprev_featuresrA   new_featuresr;   r;   r<   rL   L   s    



)F)__name__
__module____qualname__intr7   boolr,   r   r   rB   rD   r?   rP   ZunusedrJ   Z_overload_methodrL   __classcell__r;   r;   r9   r<   r      s$        r   c                	       sD   e Zd ZdZd
eeeeeedd fddZeeddd	Z	  Z
S )_DenseBlockr	   FN)
num_layersr   r   r   r    r!   r"   c           	         sJ   t    t|D ]2}t|||  ||||d}| d|d  | qd S )N)r   r   r    r!   zdenselayer%dr   )r+   r,   ranger   
add_module)	r8   r[   r   r   r   r    r!   ilayerr9   r;   r<   r,   c   s    	

z_DenseBlock.__init__)init_featuresr"   c                 C   s6   |g}|   D ]\}}||}|| qt|dS r>   )itemsappendr?   r@   )r8   r`   featuresnamer_   rS   r;   r;   r<   rL   w   s
    z_DenseBlock.forward)F)rT   rU   rV   _versionrW   r7   rX   r,   r   rL   rY   r;   r;   r9   r<   rZ   `   s   	 rZ   c                       s&   e Zd Zeedd fddZ  ZS )_TransitionN)r   num_output_featuresr"   c                    sN   t    t|| _tjdd| _tj||dddd| _tj	ddd| _
d S )NTr#   r   Fr$   r	   )r%   r&   )r+   r,   r-   r.   Znormr0   relur2   convZ	AvgPool2dpool)r8   r   rg   r9   r;   r<   r,      s
    
z_Transition.__init__)rT   rU   rV   rW   r,   rY   r;   r;   r9   r<   rf      s   rf   c                
       sR   e Zd ZdZdeeeeeef eeeeed	d
 fddZe	e	dddZ
  ZS )r   aK  Densenet-BC model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_.

    Args:
        growth_rate (int) - how many filters to add each layer (`k` in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bn_size (int) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        num_classes (int) - number of classification classes
        memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
          but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
                    @      r     FN)r   block_confignum_init_featuresr   r    num_classesr!   r"   c                    s  t    t|  ttdtjd|dddddfdt|fdtjd	d
fdtj	ddddfg| _
|}t|D ]|\}	}
t|
|||||d}| j
d|	d  | ||
|  }|	t|d krrt||d d}| j
d|	d  | |d }qr| j
dt| t||| _|  D ]r}t|tjr<tj|j nNt|tjrltj|jd tj|jd nt|tjrtj|jd qd S )NZconv0r(      r	   Fr)   Znorm0Zrelu0Tr#   Zpool0r   )r%   r&   r*   )r[   r   r   r   r    r!   zdenseblock%d)r   rg   ztransition%dZnorm5r   )r+   r,   r   r-   
Sequentialr   r2   r.   r0   Z	MaxPool2drc   	enumeraterZ   r]   lenrf   ZLinear
classifiermodulesrO   initZkaiming_normal_weightZ	constant_r'   )r8   r   rt   ru   r   r    rv   r!   Znum_featuresr^   r[   blockZtransmr9   r;   r<   r,      sJ    

zDenseNet.__init__)xr"   c                 C   s>   |  |}tj|dd}t|d}t|d}| |}|S )NTr#   )r   r   r   )rc   rR   rh   Zadaptive_avg_pool2dr?   flattenr{   )r8   r   rc   outr;   r;   r<   rL      s    

zDenseNet.forward)rk   rl   rq   rr   r   rs   F)rT   rU   rV   __doc__rW   r   r7   rX   r,   r   rL   rY   r;   r;   r9   r<   r      s&          <)modelweightsprogressr"   c                 C   sl   t d}|j|dd}t| D ]8}||}|r$|d|d }|| ||< ||= q$| | d S )Nz]^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$T)r   Z
check_hashr   r	   )recompileZget_state_dictlistkeysmatchgroupZload_state_dict)r   r   r   patternZ
state_dictkeyresZnew_keyr;   r;   r<   _load_state_dict   s    
r   )r   rt   ru   r   r   kwargsr"   c                 K   sH   |d k	rt |dt|jd  t| ||f|}|d k	rDt|||d |S )Nrv   
categories)r   r   r   )r   rz   metar   r   )r   rt   ru   r   r   r   r   r;   r;   r<   	_densenet   s    r   )   r   z*https://github.com/pytorch/vision/pull/116z'These weights are ported from LuaTorch.)Zmin_sizer   ZrecipeZ_docsc                	   @   s>   e Zd Zedeeddedddddid	d
ddZeZdS )r   z<https://download.pytorch.org/models/densenet121-a639ec97.pth   Z	crop_sizeihy ImageNet-1KgƛR@g|?5V@zacc@1zacc@5gy&1@gQ>@Z
num_paramsZ_metricsZ_ops
_file_sizeurlZ
transformsr   N	rT   rU   rV   r   r   r
   _COMMON_METAIMAGENET1K_V1DEFAULTr;   r;   r;   r<   r     s   
c                	   @   s>   e Zd Zedeeddedddddid	d
ddZeZdS )r   z<https://download.pytorch.org/models/densenet161-8d451a50.pthr   r   i(r   gFHS@gp=
cW@r   gx@gV-[@r   r   Nr   r;   r;   r;   r<   r     s   
c                	   @   s>   e Zd Zedeeddedddddid	d
ddZeZdS )r   z<https://download.pytorch.org/models/densenet169-b2777c0a.pthr   r   ih r   gfffffR@g$3W@r   gzG
@gvZK@r   r   Nr   r;   r;   r;   r<   r   3  s   
c                	   @   s>   e Zd Zedeeddedddddid	d
ddZeZdS )r   z<https://download.pytorch.org/models/densenet201-c1103571.pthr   r   ihc1r   gMbX9S@gHzWW@r   gDl)@gZd;WS@r   r   Nr   r;   r;   r;   r<   r   G  s   
Z
pretrained)r   T)r   r   )r   r   r   r"   c                 K   s   t | } tddd| |f|S )a{  Densenet-121 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet121_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet121_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet121_Weights
        :members:
    rk   rl   rq   )r   verifyr   r   r   r   r;   r;   r<   r   [  s    
c                 K   s   t | } tddd| |f|S )a{  Densenet-161 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet161_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet161_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet161_Weights
        :members:
    0   )rm   rn   $   ro   `   )r   r   r   r   r;   r;   r<   r   u  s    
c                 K   s   t | } tddd| |f|S )a{  Densenet-169 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet169_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet169_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet169_Weights
        :members:
    rk   )rm   rn   rk   rk   rq   )r   r   r   r   r;   r;   r<   r     s    
c                 K   s   t | } tddd| |f|S )a{  Densenet-201 model from
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

    Args:
        weights (:class:`~torchvision.models.DenseNet201_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet201_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet201_Weights
        :members:
    rk   )rm   rn   r   rk   rq   )r   r   r   r   r;   r;   r<   r     s    
)7r   collectionsr   	functoolsr   typingr   r   r   r   r?   Ztorch.nnr-   Ztorch.nn.functionalZ
functionalrR   Ztorch.utils.checkpointutilsrI   rH   r   Ztransforms._presetsr
   r   Z_apir   r   r   _metar   Z_utilsr   r   __all__Moduler   Z
ModuleDictrZ   rx   rf   r   rX   r   rW   r   r   r   r   r   r   r   r   r   r   r   r;   r;   r;   r<   <module>   sr   A	U$$$