U
    hL                     @   sh  d dl Z d dlZd dlmZmZ d dlmZ d dlmZ d dlm	Z	m
Z
mZmZmZ d dlZd dlZd dlmZ ddlmZ d	d
lmZmZ d	dlmZ eejejeej eej f Zeejejeej f ZdZG dd deeZG dd deZG dd deZ G dd deZ!G dd deZ"G dd deZ#e$ejdddZ%e$eejejf dddZ&dS )    N)ABCabstractmethod)globPath)CallableListOptionalTupleUnion)Image   )_read_png_16   )	_read_pfmverify_str_arg)VisionDataset)	KittiFlowSintelFlyingThings3DFlyingChairsHD1Kc                       s   e Zd ZdZdeeef ee dd fddZ	ee
j
dddZeed	d
dZeeeef dddZedddZeejjjdddZ  ZS )FlowDatasetFN)root
transformsreturnc                    s$   t  j|d || _g | _g | _d S )N)r   )super__init__r   
_flow_list_image_list)selfr   r   	__class__ T/var/www/html/venv/lib/python3.8/site-packages/torchvision/datasets/_optical_flow.pyr   #   s    zFlowDataset.__init__	file_namer   c                 C   s"   t |}|jdkr|d}|S )NRGB)r   openmodeconvert)r    r&   Zimgr#   r#   r$   	_read_img+   s    


zFlowDataset._read_img)r&   c                 C   s   d S Nr#   r    r&   r#   r#   r$   
_read_flow1   s    zFlowDataset._read_flowindexr   c                 C   s   |  | j| d }|  | j| d }| jrT| | j| }| jrN|\}}q\d }nd  }}| jd k	r~| ||||\}}}}| js|d k	r||||fS |||fS d S )Nr   r   )r+   r   r   r.   _has_builtin_flow_maskr   )r    r0   img1img2flowvalid_flow_maskr#   r#   r$   __getitem__6   s    

zFlowDataset.__getitem__)r   c                 C   s
   t | jS r,   )lenr   )r    r#   r#   r$   __len__M   s    zFlowDataset.__len__)vr   c                 C   s   t jj| g| S r,   )torchutilsdataConcatDataset)r    r9   r#   r#   r$   __rmul__P   s    zFlowDataset.__rmul__)N)__name__
__module____qualname__r1   r   strr   r	   r   r   r   r+   r   r.   intT1T2r6   r8   r:   r;   r<   r=   r>   __classcell__r#   r#   r!   r$   r      s   $r   c                       sj   e Zd ZdZdeeef eeee dd fddZ	e
eeef d fd	d
ZeejdddZ  ZS )r   a  `Sintel <http://sintel.is.tue.mpg.de/>`_ Dataset for optical flow.

    The dataset is expected to have the following structure: ::

        root
            Sintel
                testing
                    clean
                        scene_1
                        scene_2
                        ...
                    final
                        scene_1
                        scene_2
                        ...
                training
                    clean
                        scene_1
                        scene_2
                        ...
                    final
                        scene_1
                        scene_2
                        ...
                    flow
                        scene_1
                        scene_2
                        ...

    Args:
        root (str or ``pathlib.Path``): Root directory of the Sintel Dataset.
        split (string, optional): The dataset split, either "train" (default) or "test"
        pass_name (string, optional): The pass to use, either "clean" (default), "final", or "both". See link above for
            details on the different passes.
        transforms (callable, optional): A function/transform that takes in
            ``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
            ``valid_flow_mask`` is expected for consistency with other datasets which
            return a built-in valid mask, such as :class:`~torchvision.datasets.KittiFlow`.
    traincleanN)r   split	pass_namer   r   c              	      s  t  j||d t|ddd t|ddd |dkr<dd	gn|g}t|d
 }|d d }|D ]}|dkrndn|}|| | }t|D ]|}	ttt||	 d }
t	t
|
d D ]$}|  j|
| |
|d  gg7  _q|dkr|  jttt||	 d 7  _qq^d S )Nr   r   rI   rG   testZvalid_valuesrJ   rH   finalbothrQ   rH   rP   r   Ztrainingr4   rG   *.pngr   *.flo)r   r   r   r   oslistdirsortedr   rB   ranger7   r   r   )r    r   rI   rJ   r   passesZ	flow_rootZ	split_dirZ
image_rootZsceneZ
image_listir!   r#   r$   r   }   s    "zSintel.__init__r/   c                    s   t  |S a  Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3-tuple with ``(img1, img2, flow)``.
            The flow is a numpy array of shape (2, H, W) and the images are PIL images.
            ``flow`` is None if ``split="test"``.
            If a valid flow mask is generated within the ``transforms`` parameter,
            a 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` is returned.
        r   r6   r    r0   r!   r#   r$   r6      s    zSintel.__getitem__r%   c                 C   s   t |S r,   	_read_flor-   r#   r#   r$   r.      s    zSintel._read_flow)rG   rH   Nr?   r@   rA   __doc__r   rB   r   r	   r   r   rC   rD   rE   r6   npndarrayr.   rF   r#   r#   r!   r$   r   T   s   +   
r   c                       sv   e Zd ZdZdZdeeef eee	 dd fddZ
eeeef d fd	d
Zeeejejf dddZ  ZS )r   a  `KITTI <http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow>`__ dataset for optical flow (2015).

    The dataset is expected to have the following structure: ::

        root
            KittiFlow
                testing
                    image_2
                training
                    image_2
                    flow_occ

    Args:
        root (str or ``pathlib.Path``): Root directory of the KittiFlow Dataset.
        split (string, optional): The dataset split, either "train" (default) or "test"
        transforms (callable, optional): A function/transform that takes in
            ``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
    TrG   Nr   rI   r   r   c                    s   t  j||d t|ddd t|d |d  }ttt|d d }ttt|d d	 }|rj|srtd
t||D ]\}}|  j	||gg7  _	q||dkrttt|d d | _
d S )NrK   rI   rL   rN   r   Zingimage_2z*_10.pngz*_11.pngzZCould not find the Kitti flow images. Please make sure the directory structure is correct.rG   flow_occ)r   r   r   r   rV   r   rB   FileNotFoundErrorzipr   r   )r    r   rI   r   images1images2r2   r3   r!   r#   r$   r      s    zKittiFlow.__init__r/   c                    s   t  |S )a  Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 4-tuple with ``(img1, img2, flow, valid_flow_mask)``
            where ``valid_flow_mask`` is a numpy boolean mask of shape (H, W)
            indicating which flow values are valid. The flow is a numpy array of
            shape (2, H, W) and the images are PIL images. ``flow`` and ``valid_flow_mask`` are None if
            ``split="test"``.
        r[   r\   r!   r#   r$   r6      s    zKittiFlow.__getitem__r%   c                 C   s   t |S r,   )_read_16bits_png_with_flow_and_valid_maskr-   r#   r#   r$   r.      s    zKittiFlow._read_flow)rG   N)r?   r@   rA   r`   r1   r   rB   r   r	   r   r   rC   rD   rE   r6   r
   ra   rb   r.   rF   r#   r#   r!   r$   r      s
   &r   c                       sh   e Zd ZdZdeeef eee dd fddZ	e
eeef d fdd	Zeejd
ddZ  ZS )r   a  `FlyingChairs <https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html#flyingchairs>`_ Dataset for optical flow.

    You will also need to download the FlyingChairs_train_val.txt file from the dataset page.

    The dataset is expected to have the following structure: ::

        root
            FlyingChairs
                data
                    00001_flow.flo
                    00001_img1.ppm
                    00001_img2.ppm
                    ...
                FlyingChairs_train_val.txt


    Args:
        root (str or ``pathlib.Path``): Root directory of the FlyingChairs Dataset.
        split (string, optional): The dataset split, either "train" (default) or "val"
        transforms (callable, optional): A function/transform that takes in
            ``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
            ``valid_flow_mask`` is expected for consistency with other datasets which
            return a built-in valid mask, such as :class:`~torchvision.datasets.KittiFlow`.
    rG   Nrc   c           
         s  t  j||d t|ddd t|d }ttt|d d }ttt|d d }d	}tj	|| svt
d
tjt|| tjd}tt|D ]h}|| }	|dkr|	dks|dkr|	dkr|  j|| g7  _|  j|d|  |d| d  gg7  _qd S )NrK   rI   )rG   valrN   r   r<   z*.ppmrS   zFlyingChairs_train_val.txtzmThe FlyingChairs_train_val.txt file was not found - please download it from the dataset page (see docstring).)ZdtyperG   r   rl   r   )r   r   r   r   rV   r   rB   rT   pathexistsrf   ra   ZloadtxtZint32rW   r7   r   r   )
r    r   rI   r   imagesflowsZsplit_file_nameZ
split_listrY   Zsplit_idr!   r#   r$   r     s      zFlyingChairs.__init__r/   c                    s   t  |S )a  Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3-tuple with ``(img1, img2, flow)``.
            The flow is a numpy array of shape (2, H, W) and the images are PIL images.
            ``flow`` is None if ``split="val"``.
            If a valid flow mask is generated within the ``transforms`` parameter,
            a 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` is returned.
        r[   r\   r!   r#   r$   r6     s    zFlyingChairs.__getitem__r%   c                 C   s   t |S r,   r]   r-   r#   r#   r$   r.   (  s    zFlyingChairs._read_flow)rG   Nr_   r#   r#   r!   r$   r      s   &r   c                       sl   e Zd ZdZdeeef eeeee dd fddZ	e
eeef d	 fd
dZeejdddZ  ZS )r   a  `FlyingThings3D <https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html>`_ dataset for optical flow.

    The dataset is expected to have the following structure: ::

        root
            FlyingThings3D
                frames_cleanpass
                    TEST
                    TRAIN
                frames_finalpass
                    TEST
                    TRAIN
                optical_flow
                    TEST
                    TRAIN

    Args:
        root (str or ``pathlib.Path``): Root directory of the intel FlyingThings3D Dataset.
        split (string, optional): The dataset split, either "train" (default) or "test"
        pass_name (string, optional): The pass to use, either "clean" (default) or "final" or "both". See link above for
            details on the different passes.
        camera (string, optional): Which camera to return images from. Can be either "left" (default) or "right" or "both".
        transforms (callable, optional): A function/transform that takes in
            ``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
            ``valid_flow_mask`` is expected for consistency with other datasets which
            return a built-in valid mask, such as :class:`~torchvision.datasets.KittiFlow`.
    rG   rH   leftN)r   rI   rJ   camerar   r   c              	      s  t  j||d t|ddd | }t|ddd dgdgddgd| }t d	d
d  dkrjddgn g}t|d }d}t|||D ]\\} ttt	|| | d }	t fdd|	D }	ttt	|d | d }
t fdd|
D }
|	r|
st
dt|	|
D ]\}}ttt	|d }ttt	|d }tt|d D ]}dkr|  j|| ||d  gg7  _|  j|| g7  _nBdkr^|  j||d  || gg7  _|  j||d  g7  _q^qqd S )NrK   rI   rL   rN   rJ   rO   Zframes_cleanpassZframes_finalpassrr   )rq   rightrQ   rQ   rq   rs   r   )into_future	into_pastz*/*c                 3   s   | ]}t |  V  qd S r,   r   ).0	image_dir)rr   r#   r$   	<genexpr>e  s     z*FlyingThings3D.__init__.<locals>.<genexpr>Zoptical_flowc                 3   s   | ]}t |   V  qd S r,   r   )rv   flow_dirrr   	directionr#   r$   rx   h  s     zcCould not find the FlyingThings3D flow images. Please make sure the directory structure is correct.rR   z*.pfmr   rt   ru   )r   r   r   upperr   	itertoolsproductrV   r   rB   rf   rg   rW   r7   r   r   )r    r   rI   rJ   rr   r   rX   ZcamerasZ
directionsZ
image_dirsZ	flow_dirsrw   ry   ro   rp   rY   r!   rz   r$   r   I  sB    
 
 zFlyingThings3D.__init__r/   c                    s   t  |S rZ   r[   r\   r!   r#   r$   r6   {  s    zFlyingThings3D.__getitem__r%   c                 C   s   t |S r,   )r   r-   r#   r#   r$   r.     s    zFlyingThings3D._read_flow)rG   rH   rq   Nr_   r#   r#   r!   r$   r   ,  s       
2r   c                       sv   e Zd ZdZdZdeeef eee	 dd fddZ
eeejejf dd	d
Zeeeef d fddZ  ZS )r   a  `HD1K <http://hci-benchmark.iwr.uni-heidelberg.de/>`__ dataset for optical flow.

    The dataset is expected to have the following structure: ::

        root
            hd1k
                hd1k_challenge
                    image_2
                hd1k_flow_gt
                    flow_occ
                hd1k_input
                    image_2

    Args:
        root (str or ``pathlib.Path``): Root directory of the HD1K Dataset.
        split (string, optional): The dataset split, either "train" (default) or "test"
        transforms (callable, optional): A function/transform that takes in
            ``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
    TrG   Nrc   c                    sJ  t  j||d t|ddd t|d }|dkrtdD ]}ttt|d d	 |d
d }ttt|d d |d
d }tt|d D ]8}|  j	|| g7  _	|  j
|| ||d  gg7  _
qq:nbttt|d d d }ttt|d d d }	t||	D ]\}
}|  j
|
|gg7  _
q| j
sFtdd S )NrK   rI   rL   rN   Zhd1krG   $   Zhd1k_flow_gtre   Z06dz_*.pngZ
hd1k_inputrd   r   Zhd1k_challengez*10.pngz*11.pngzTCould not find the HD1K images. Please make sure the directory structure is correct.)r   r   r   r   rW   rV   r   rB   r7   r   r   rg   rf   )r    r   rI   r   Zseq_idxrp   ro   rY   rh   ri   Zimage1Zimage2r!   r#   r$   r     s$    $$&zHD1K.__init__r%   c                 C   s   t |S r,   rj   r-   r#   r#   r$   r.     s    zHD1K._read_flowr/   c                    s   t  |S )a  Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` where ``valid_flow_mask``
            is a numpy boolean mask of shape (H, W)
            indicating which flow values are valid. The flow is a numpy array of
            shape (2, H, W) and the images are PIL images. ``flow`` and ``valid_flow_mask`` are None if
            ``split="test"``.
        r[   r\   r!   r#   r$   r6     s    zHD1K.__getitem__)rG   N)r?   r@   rA   r`   r1   r   rB   r   r	   r   r   r
   ra   rb   r.   rC   rD   rE   r6   rF   r#   r#   r!   r$   r     s
   &r   r%   c              
   C   s   t | d}tj|ddd }|dkr0tdttj|ddd}ttj|ddd}tj|d	d
| | d}|||d
d
ddW  5 Q R  S Q R X dS )z#Read .flo file in Middlebury formatrbc   )counts   PIEHz)Magic number incorrect. Invalid .flo filez<i4r   z<f4r   r   N)r(   ra   fromfiletobytes
ValueErrorrC   ZreshapeZ	transpose)r&   fmagicwhr<   r#   r#   r$   r^     s    r^   c                 C   sf   t | tj}|d dd d d d f |dd d d d f  }}|d d }| }| | fS )Nr   i   @   )r   tor:   Zfloat32boolnumpy)r&   Zflow_and_validr4   r5   r#   r#   r$   rk     s
    2rk   )'r}   rT   abcr   r   r   pathlibr   typingr   r   r	   r
   r   r   ra   r:   ZPILr   Zio.imager   r;   r   r   Zvisionr   rb   rD   rE   __all__r   r   r   r   r   r   rB   r^   rk   r#   r#   r#   r$   <module>   s,    	7W=DbC