U
    Mh'                     @   s6   d dl Z d dlZd dlmZ dgZG dd deZdS )    N)MapDataPipeSequenceWrapperMapDataPipec                   @   s*   e Zd ZdZd
ddZdd Zdd Zd	S )r   a  
    Wraps a sequence object into a MapDataPipe.

    Args:
        sequence: Sequence object to be wrapped into an MapDataPipe
        deepcopy: Option to deepcopy input sequence object

    .. note::
      If ``deepcopy`` is set to False explicitly, users should ensure
      that data pipeline doesn't contain any in-place operations over
      the iterable instance, in order to prevent data inconsistency
      across iterations.

    Example:
        >>> # xdoctest: +SKIP
        >>> from torchdata.datapipes.map import SequenceWrapper
        >>> dp = SequenceWrapper(range(10))
        >>> list(dp)
        [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
        >>> dp = SequenceWrapper({'a': 100, 'b': 200, 'c': 300, 'd': 400})
        >>> dp['a']
        100
    Tc                 C   sF   |r<zt || _W qB tk
r8   td || _Y qBX n|| _d S )NzkThe input sequence can not be deepcopied, please be aware of in-place modification would affect source data)copydeepcopysequence	TypeErrorwarningswarn)selfr   r    r   V/var/www/html/venv/lib/python3.8/site-packages/torch/utils/data/datapipes/map/utils.py__init__"   s    z#SequenceWrapperMapDataPipe.__init__c                 C   s
   | j | S N)r   )r
   indexr   r   r   __getitem__/   s    z&SequenceWrapperMapDataPipe.__getitem__c                 C   s
   t | jS r   )lenr   )r
   r   r   r   __len__2   s    z"SequenceWrapperMapDataPipe.__len__N)T)__name__
__module____qualname____doc__r   r   r   r   r   r   r   r   	   s   
)r   r   Z#torch.utils.data.datapipes.datapiper   __all__r   r   r   r   r   <module>   s   