U
    Mh9                     @   s   d dl Z d dlZd dlmZ ddlmZ ddlmZ ddl	m
Z ddl	mZ d d	l mZmZ d d
lmZmZmZmZ dddddgZG dd deZG dd deZeeee ef ZG dd deZG dd deZG dd deZdS )    N)	Parameter   )Module)CrossMapLRN2d   )
functional)init)TensorSize)UnionListOptionalTupleLocalResponseNormr   	LayerNorm	GroupNormRMSNormc                       sv   e Zd ZU dZddddgZeed< eed< eed< eed< deeeed	d
 fddZe	e	dddZ
dd Z  ZS )r   a  Applies local response normalization over an input signal.

    The input signal is composed of several input planes, where channels occupy the second dimension.
    Applies normalization across channels.

    .. math::
        b_{c} = a_{c}\left(k + \frac{\alpha}{n}
        \sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta}

    Args:
        size: amount of neighbouring channels used for normalization
        alpha: multiplicative factor. Default: 0.0001
        beta: exponent. Default: 0.75
        k: additive factor. Default: 1

    Shape:
        - Input: :math:`(N, C, *)`
        - Output: :math:`(N, C, *)` (same shape as input)

    Examples::

        >>> lrn = nn.LocalResponseNorm(2)
        >>> signal_2d = torch.randn(32, 5, 24, 24)
        >>> signal_4d = torch.randn(16, 5, 7, 7, 7, 7)
        >>> output_2d = lrn(signal_2d)
        >>> output_4d = lrn(signal_4d)

    sizealphabetak-C6?      ?      ?Nr   r   r   r   returnc                    s&   t    || _|| _|| _|| _d S Nsuper__init__r   r   r   r   selfr   r   r   r   	__class__ P/var/www/html/venv/lib/python3.8/site-packages/torch/nn/modules/normalization.pyr   3   s
    
zLocalResponseNorm.__init__inputr   c                 C   s   t || j| j| j| jS r   )FZlocal_response_normr   r   r   r   r!   r'   r$   r$   r%   forward:   s    zLocalResponseNorm.forwardc                 C   s   dj f | jS Nz){size}, alpha={alpha}, beta={beta}, k={k}format__dict__r!   r$   r$   r%   
extra_repr>   s    zLocalResponseNorm.extra_repr)r   r   r   )__name__
__module____qualname____doc____constants__int__annotations__floatr   r	   r*   r0   __classcell__r$   r$   r"   r%   r      s   
c                       sl   e Zd ZU eed< eed< eed< eed< deeeedd	 fd
dZeedddZe	dddZ
  ZS )r   r   r   r   r   r   r   r   Nr   c                    s&   t    || _|| _|| _|| _d S r   r   r    r"   r$   r%   r   H   s
    
zCrossMapLRN2d.__init__r&   c                 C   s   t || j| j| j| jS r   )_cross_map_lrn2dapplyr   r   r   r   r)   r$   r$   r%   r*   O   s    zCrossMapLRN2d.forwardr   c                 C   s   dj f | jS r+   r,   r/   r$   r$   r%   r0   S   s    zCrossMapLRN2d.extra_repr)r   r   r   )r1   r2   r3   r6   r7   r8   r   r	   r*   strr0   r9   r$   r$   r"   r%   r   B   s   
c                       s   e Zd ZU dZdddgZeedf ed< eed< e	ed< de
ee	e	dd	 fd
dZddddZeedddZedddZ  ZS )r   a  Applies Layer Normalization over a mini-batch of inputs.

    This layer implements the operation as described in
    the paper `Layer Normalization <https://arxiv.org/abs/1607.06450>`__

    .. math::
        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated over the last `D` dimensions, where `D`
    is the dimension of :attr:`normalized_shape`. For example, if :attr:`normalized_shape`
    is ``(3, 5)`` (a 2-dimensional shape), the mean and standard-deviation are computed over
    the last 2 dimensions of the input (i.e. ``input.mean((-2, -1))``).
    :math:`\gamma` and :math:`\beta` are learnable affine transform parameters of
    :attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``.
    The standard-deviation is calculated via the biased estimator, equivalent to
    `torch.var(input, unbiased=False)`.

    .. note::
        Unlike Batch Normalization and Instance Normalization, which applies
        scalar scale and bias for each entire channel/plane with the
        :attr:`affine` option, Layer Normalization applies per-element scale and
        bias with :attr:`elementwise_affine`.

    This layer uses statistics computed from input data in both training and
    evaluation modes.

    Args:
        normalized_shape (int or list or torch.Size): input shape from an expected input
            of size

            .. math::
                [* \times \text{normalized\_shape}[0] \times \text{normalized\_shape}[1]
                    \times \ldots \times \text{normalized\_shape}[-1]]

            If a single integer is used, it is treated as a singleton list, and this module will
            normalize over the last dimension which is expected to be of that specific size.
        eps: a value added to the denominator for numerical stability. Default: 1e-5
        elementwise_affine: a boolean value that when set to ``True``, this module
            has learnable per-element affine parameters initialized to ones (for weights)
            and zeros (for biases). Default: ``True``.
        bias: If set to ``False``, the layer will not learn an additive bias (only relevant if
            :attr:`elementwise_affine` is ``True``). Default: ``True``.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
            The values are initialized to 1.
        bias:   the learnable bias of the module of shape
                :math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
                The values are initialized to 0.

    Shape:
        - Input: :math:`(N, *)`
        - Output: :math:`(N, *)` (same shape as input)

    Examples::

        >>> # NLP Example
        >>> batch, sentence_length, embedding_dim = 20, 5, 10
        >>> embedding = torch.randn(batch, sentence_length, embedding_dim)
        >>> layer_norm = nn.LayerNorm(embedding_dim)
        >>> # Activate module
        >>> layer_norm(embedding)
        >>>
        >>> # Image Example
        >>> N, C, H, W = 20, 5, 10, 10
        >>> input = torch.randn(N, C, H, W)
        >>> # Normalize over the last three dimensions (i.e. the channel and spatial dimensions)
        >>> # as shown in the image below
        >>> layer_norm = nn.LayerNorm([C, H, W])
        >>> output = layer_norm(input)

    .. image:: ../_static/img/nn/layer_norm.jpg
        :scale: 50 %

    normalized_shapeepselementwise_affine.h㈵>TN)r>   r?   r@   biasr   c                    s   ||d}t    t|tjr&|f}t|| _|| _|| _| jrt	t
j| jf|| _|rtt	t
j| jf|| _q| dd  n| dd  | dd  |   d S )NdevicedtyperB   weight)r   r   
isinstancenumbersIntegraltupler>   r?   r@   r   torchemptyrF   rB   register_parameterreset_parameters)r!   r>   r?   r@   rB   rD   rE   factory_kwargsr"   r$   r%   r      s    


zLayerNorm.__init__r<   c                 C   s,   | j r(t| j | jd k	r(t| j d S r   )r@   r   ones_rF   rB   zeros_r/   r$   r$   r%   rN      s    
zLayerNorm.reset_parametersr&   c                 C   s   t || j| j| j| jS r   )r(   Z
layer_normr>   rF   rB   r?   r)   r$   r$   r%   r*      s        zLayerNorm.forwardc                 C   s   dj f | jS )NF{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}r,   r/   r$   r$   r%   r0      s    zLayerNorm.extra_repr)rA   TTNN)r1   r2   r3   r4   r5   r   r6   r7   r8   bool_shape_tr   rN   r	   r*   r=   r0   r9   r$   r$   r"   r%   r   Z   s    
M
       c                       s   e Zd ZU dZddddgZeed< eed< eed< eed< deeeedd	 fd
dZ	ddddZ
eedddZedddZ  ZS )r   a  Applies Group Normalization over a mini-batch of inputs.

    This layer implements the operation as described in
    the paper `Group Normalization <https://arxiv.org/abs/1803.08494>`__

    .. math::
        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The input channels are separated into :attr:`num_groups` groups, each containing
    ``num_channels / num_groups`` channels. :attr:`num_channels` must be divisible by
    :attr:`num_groups`. The mean and standard-deviation are calculated
    separately over the each group. :math:`\gamma` and :math:`\beta` are learnable
    per-channel affine transform parameter vectors of size :attr:`num_channels` if
    :attr:`affine` is ``True``.
    The standard-deviation is calculated via the biased estimator, equivalent to
    `torch.var(input, unbiased=False)`.

    This layer uses statistics computed from input data in both training and
    evaluation modes.

    Args:
        num_groups (int): number of groups to separate the channels into
        num_channels (int): number of channels expected in input
        eps: a value added to the denominator for numerical stability. Default: 1e-5
        affine: a boolean value that when set to ``True``, this module
            has learnable per-channel affine parameters initialized to ones (for weights)
            and zeros (for biases). Default: ``True``.

    Shape:
        - Input: :math:`(N, C, *)` where :math:`C=\text{num\_channels}`
        - Output: :math:`(N, C, *)` (same shape as input)

    Examples::

        >>> input = torch.randn(20, 6, 10, 10)
        >>> # Separate 6 channels into 3 groups
        >>> m = nn.GroupNorm(3, 6)
        >>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm)
        >>> m = nn.GroupNorm(6, 6)
        >>> # Put all 6 channels into a single group (equivalent with LayerNorm)
        >>> m = nn.GroupNorm(1, 6)
        >>> # Activating the module
        >>> output = m(input)
    
num_groupsnum_channelsr?   affinerA   TN)rU   rV   r?   rW   r   c                    s   ||d}t    || dkr(td|| _|| _|| _|| _| jrpttj	|f|| _
ttj	|f|| _n| dd  | dd  |   d S )NrC   r   z,num_channels must be divisible by num_groupsrF   rB   )r   r   
ValueErrorrU   rV   r?   rW   r   rK   rL   rF   rB   rM   rN   )r!   rU   rV   r?   rW   rD   rE   rO   r"   r$   r%   r     s    

zGroupNorm.__init__r<   c                 C   s"   | j rt| j t| j d S r   )rW   r   rP   rF   rQ   rB   r/   r$   r$   r%   rN     s    zGroupNorm.reset_parametersr&   c                 C   s   t || j| j| j| jS r   )r(   Z
group_normrU   rF   rB   r?   r)   r$   r$   r%   r*     s        zGroupNorm.forwardc                 C   s   dj f | jS )Nz8{num_groups}, {num_channels}, eps={eps}, affine={affine}r,   r/   r$   r$   r%   r0   #  s    zGroupNorm.extra_repr)rA   TNN)r1   r2   r3   r4   r5   r6   r7   r8   rS   r   rN   r	   r*   r=   r0   r9   r$   r$   r"   r%   r      s   
-    
c                       s   e Zd ZU dZdddgZeedf ed< ee	 ed< e
ed< deee	 e
dd fd	d
ZddddZejejdddZedddZ  ZS )r   a}  Applies Root Mean Square Layer Normalization over a mini-batch of inputs.

    This layer implements the operation as described in
    the paper `Root Mean Square Layer Normalization <https://arxiv.org/pdf/1910.07467.pdf>`__

    .. math::
        y = \frac{x}{\sqrt{\mathrm{RMS}[x] + \epsilon}} * \gamma

    The root mean squared norm is taken over the last ``D`` dimensions, where ``D``
    is the dimension of :attr:`normalized_shape`. For example, if :attr:`normalized_shape`
    is ``(3, 5)`` (a 2-dimensional shape), the rms norm is computed over
    the last 2 dimensions of the input.

    Args:
        normalized_shape (int or list or torch.Size): input shape from an expected input
            of size

            .. math::
                [* \times \text{normalized\_shape}[0] \times \text{normalized\_shape}[1]
                    \times \ldots \times \text{normalized\_shape}[-1]]

            If a single integer is used, it is treated as a singleton list, and this module will
            normalize over the last dimension which is expected to be of that specific size.
        eps: a value added to the denominator for numerical stability. Default: :func:`torch.finfo(x.dtype).eps`
        elementwise_affine: a boolean value that when set to ``True``, this module
            has learnable per-element affine parameters initialized to ones (for weights)
            and zeros (for biases). Default: ``True``.

    Shape:
        - Input: :math:`(N, *)`
        - Output: :math:`(N, *)` (same shape as input)

    Examples::

        >>> rms_norm = nn.RMSNorm([2, 3])
        >>> input = torch.randn(2, 2, 3)
        >>> rms_norm(input)

    r>   r?   r@   .NT)r>   r?   r@   r   c                    sr   ||d}t    t|tjr&|f}t|| _|| _|| _| jrZt	t
j| jf|| _n| dd  |   d S )NrC   rF   )r   r   rG   rH   rI   rJ   r>   r?   r@   r   rK   rL   rF   rM   rN   )r!   r>   r?   r@   rD   rE   rO   r"   r$   r%   r   U  s    


zRMSNorm.__init__r<   c                 C   s   | j rt| j dS )zS
        Resets parameters based on their initialization used in __init__.
        N)r@   r   rP   rF   r/   r$   r$   r%   rN   e  s    zRMSNorm.reset_parameters)xr   c                 C   s   t || j| j| jS )z$
        Runs forward pass.
        )r(   Zrms_normr>   rF   r?   )r!   rY   r$   r$   r%   r*   l  s    zRMSNorm.forwardc                 C   s   dj f | jS )z5
        Extra information about the module.
        rR   r,   r/   r$   r$   r%   r0   r  s    zRMSNorm.extra_repr)NTNN)r1   r2   r3   r4   r5   r   r6   r7   r   r8   rS   rT   r   rN   rK   r	   r*   r=   r0   r9   r$   r$   r"   r%   r   (  s   
'
    )rK   rH   Ztorch.nn.parameterr   moduler   Z
_functionsr   r:    r   r(   r   r	   r
   typingr   r   r   r   __all__r   r6   rT   r   r   r   r$   r$   r$   r%   <module>   s   3xV