U
    yhK)                     @   s   d dl Z d dlZd dlmZ d dlmZ dZdd Zdd Zd	d
 Z	e
fddZe
fddZe
fddZe
fddZe
fddZe
fddZe
fddZdd Ze
fddZde
fddZd(d d!Zd"d# Zd$d% Zd&d' ZdS ))    N)reduce)Mapping)merge
merge_withvalmapkeymapitemmap	valfilter	keyfilter
itemfilterassocdissocassoc_in	update_inget_inc                 C   s2   | dt}|r.t| j d| d  d|S )Nfactoryz'() got an unexpected keyword argument 'r   ')popdict	TypeError__name__popitem)fkwargsr    r   e/var/www/html/venv/lib/python3.8/site-packages/torch/fx/experimental/unification/unification_tools.py_get_factory   s    r   c                  O   sJ   t | dkr"t| d ts"| d } tt|}| }| D ]}|| q6|S )z Merge a collection of dictionaries

    >>> merge({1: 'one'}, {2: 'two'})
    {1: 'one', 2: 'two'}

    Later dictionaries have precedence

    >>> merge({1: 2, 3: 4}, {3: 3, 4: 4})
    {1: 2, 3: 3, 4: 4}

    See Also:
        merge_with
       r   )len
isinstancer   r   r   update)dictsr   r   rvdr   r   r   r      s    
r   c                 O   s|   t |dkr"t|d ts"|d }tt|}| }|D ]8}| D ]*\}}||kr^|g||< qB|| | qBq6t| ||S )a   Merge dictionaries and apply function to combined values

    A key may occur in more than one dict, and all values mapped from the key
    will be passed to the function as a list, such as func([val1, val2, ...]).

    >>> merge_with(sum, {1: 1, 2: 2}, {1: 10, 2: 20})
    {1: 11, 2: 22}

    >>> merge_with(first, {1: 1, 2: 2}, {2: 20, 3: 30})  # doctest: +SKIP
    {1: 1, 2: 2, 3: 30}

    See Also:
        merge
    r   r   )r   r   r   r   r   itemsappendr   )funcr!   r   r   resultr#   kvr   r   r   r   +   s    
r   c                 C   s(   | }| t| t| |  |S )z Apply function to values of dictionary

    >>> bills = {"Alice": [20, 15, 30], "Bob": [10, 35]}
    >>> valmap(sum, bills)  # doctest: +SKIP
    {'Alice': 65, 'Bob': 45}

    See Also:
        keymap
        itemmap
    )r    zipkeysmapvaluesr&   r#   r   r"   r   r   r   r   H   s    r   c                 C   s(   | }| tt| | |  |S )z Apply function to keys of dictionary

    >>> bills = {"Alice": [20, 15, 30], "Bob": [10, 35]}
    >>> keymap(str.lower, bills)  # doctest: +SKIP
    {'alice': [20, 15, 30], 'bob': [10, 35]}

    See Also:
        valmap
        itemmap
    )r    r*   r,   r+   r-   r.   r   r   r   r   X   s    r   c                 C   s   | }| t| |  |S )z Apply function to items of dictionary

    >>> accountids = {"Alice": 10, "Bob": 20}
    >>> itemmap(reversed, accountids)  # doctest: +SKIP
    {10: "Alice", 20: "Bob"}

    See Also:
        keymap
        valmap
    )r    r,   r$   r.   r   r   r   r   h   s    r   c                 C   s,   | }|  D ]\}}| |r|||< q|S )z Filter items in dictionary by value

    >>> iseven = lambda x: x % 2 == 0
    >>> d = {1: 2, 2: 3, 3: 4, 4: 5}
    >>> valfilter(iseven, d)
    {1: 2, 3: 4}

    See Also:
        keyfilter
        itemfilter
        valmap
    r$   	predicater#   r   r"   r(   r)   r   r   r   r	   x   s
    
r	   c                 C   s,   | }|  D ]\}}| |r|||< q|S )z Filter items in dictionary by key

    >>> iseven = lambda x: x % 2 == 0
    >>> d = {1: 2, 2: 3, 3: 4, 4: 5}
    >>> keyfilter(iseven, d)
    {2: 3, 4: 5}

    See Also:
        valfilter
        itemfilter
        keymap
    r/   r0   r   r   r   r
      s
    
r
   c                 C   s0   | }|  D ]}| |r|\}}|||< q|S )a   Filter items in dictionary by item

    >>> def isvalid(item):
    ...     k, v = item
    ...     return k % 2 == 0 and v < 4

    >>> d = {1: 2, 2: 3, 3: 4, 4: 5}
    >>> itemfilter(isvalid, d)
    {2: 3}

    See Also:
        keyfilter
        valfilter
        itemmap
    r/   )r1   r#   r   r"   itemr(   r)   r   r   r   r      s    
r   c                 C   s   | }| |  |||< |S )z Return a new dict with new key value pair

    New dict has d[key] set to value. Does not modify the initial dictionary.

    >>> assoc({'x': 1}, 'x', 2)
    {'x': 2}
    >>> assoc({'x': 1}, 'y', 3)   # doctest: +SKIP
    {'x': 1, 'y': 3}
    )r    )r#   keyvaluer   d2r   r   r   r      s    

r   c                 O   st   t t|}| }t|t| d k rH||  |D ]}||kr2||= q2n(t| }|| |D ]}| | ||< q^|S )aB   Return a new dict with the given key(s) removed.

    New dict has d[key] deleted for each supplied key.
    Does not modify the initial dictionary.

    >>> dissoc({'x': 1, 'y': 2}, 'y')
    {'x': 1}
    >>> dissoc({'x': 1, 'y': 2}, 'y', 'x')
    {}
    >>> dissoc({'x': 1}, 'y') # Ignores missing keys
    {'x': 1}
    g333333?)r   r   r   r    setdifference_update)r#   r+   r   r   r5   r3   	remainingr(   r   r   r   r      s    



r   c                    s   t | | fdd |S )a   Return a new dict with new, potentially nested, key value pair

    >>> purchase = {'name': 'Alice',
    ...             'order': {'items': ['Apple', 'Orange'],
    ...                       'costs': [0.50, 1.25]},
    ...             'credit card': '5555-1234-1234-1234'}
    >>> assoc_in(purchase, ['order', 'costs'], [0.25, 1.00]) # doctest: +SKIP
    {'credit card': '5555-1234-1234-1234',
     'name': 'Alice',
     'order': {'costs': [0.25, 1.00], 'items': ['Apple', 'Orange']}}
    c                    s    S Nr   xr4   r   r   <lambda>       zassoc_in.<locals>.<lambda>)r   )r#   r+   r4   r   r   r<   r   r      s    r   c                 C   s   t |}t|}|  }}||  |D ]@}	|| krN| | } | }
|
|  n
|  } }
|
 ||< }|	}q(|| kr|| | ||< n||||< |S )a	   Update value in a (potentially) nested dictionary

    inputs:
    d - dictionary on which to operate
    keys - list or tuple giving the location of the value to be changed in d
    func - function to operate on that value

    If keys == [k0,..,kX] and d[k0]..[kX] == v, update_in returns a copy of the
    original dictionary with v replaced by func(v), but does not mutate the
    original dictionary.

    If k0 is not a key in d, update_in creates nested dictionaries to the depth
    specified by the keys, with the innermost value set to func(default).

    >>> inc = lambda x: x + 1
    >>> update_in({'a': 0}, ['a'], inc)
    {'a': 1}

    >>> transaction = {'name': 'Alice',
    ...                'purchase': {'items': ['Apple', 'Orange'],
    ...                             'costs': [0.50, 1.25]},
    ...                'credit card': '5555-1234-1234-1234'}
    >>> update_in(transaction, ['purchase', 'costs'], sum) # doctest: +SKIP
    {'credit card': '5555-1234-1234-1234',
     'name': 'Alice',
     'purchase': {'costs': 1.75, 'items': ['Apple', 'Orange']}}

    >>> # updating a value when k0 is not in d
    >>> update_in({}, [1, 2, 3], str, default="bar")
    {1: {2: {3: 'bar'}}}
    >>> update_in({1: 'foo'}, [2, 3, 4], inc, 0)
    {1: 'foo', 2: {3: {4: 1}}}
    )iternextr    )r#   r+   r&   defaultr   ksr(   r"   innerr3   Zdtempr   r   r   r      s     "


r   Fc              
   C   s:   zt tj| |W S  tttfk
r4   |r, | Y S X dS )a4   Returns coll[i0][i1]...[iX] where [i0, i1, ..., iX]==keys.

    If coll[i0][i1]...[iX] cannot be found, returns ``default``, unless
    ``no_default`` is specified, then it raises KeyError or IndexError.

    ``get_in`` is a generalization of ``operator.getitem`` for nested data
    structures such as dictionaries and lists.

    >>> transaction = {'name': 'Alice',
    ...                'purchase': {'items': ['Apple', 'Orange'],
    ...                             'costs': [0.50, 1.25]},
    ...                'credit card': '5555-1234-1234-1234'}
    >>> get_in(['purchase', 'items', 0], transaction)
    'Apple'
    >>> get_in(['name'], transaction)
    'Alice'
    >>> get_in(['purchase', 'total'], transaction)
    >>> get_in(['purchase', 'items', 'apple'], transaction)
    >>> get_in(['purchase', 'items', 10], transaction)
    >>> get_in(['purchase', 'total'], transaction, 0)
    0
    >>> get_in(['y'], {}, no_default=True)
    Traceback (most recent call last):
        ...
    KeyError: 'y'

    See Also:
        itertoolz.get
        operator.getitem
    N)r   operatorgetitemKeyError
IndexErrorr   )r+   ZcollrA   Z
no_defaultr   r   r   r   .  s    r   c                    sP   t  trBt dkr* d   fddS  r8tj  S dd S n
t S d S )Nr   r   c                    s
   |   fS r9   r   r:   indexr   r   r=   Y  r>   zgetter.<locals>.<lambda>c                 S   s   dS )Nr   r   r:   r   r   r   r=   ]  r>   )r   listr   rD   
itemgetterrH   r   rH   r   getterU  s    


rL   c                 C   s\   t | st| } tdd }|D ]}|| | | q"i }| D ]\}}|j||< qD|S )aV   Group a collection by a key function

    >>> names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank']
    >>> groupby(len, names)  # doctest: +SKIP
    {3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']}

    >>> iseven = lambda x: x % 2 == 0
    >>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8])  # doctest: +SKIP
    {False: [1, 3, 5, 7], True: [2, 4, 6, 8]}

    Non-callable keys imply grouping on a member.

    >>> groupby('gender', [{'name': 'Alice', 'gender': 'F'},
    ...                    {'name': 'Bob', 'gender': 'M'},
    ...                    {'name': 'Charlie', 'gender': 'M'}]) # doctest:+SKIP
    {'F': [{'gender': 'F', 'name': 'Alice'}],
     'M': [{'gender': 'M', 'name': 'Bob'},
           {'gender': 'M', 'name': 'Charlie'}]}

    Not to be confused with ``itertools.groupby``

    See Also:
        countby
    c                   S   s   g j S r9   )r%   r   r   r   r   r=   }  r>   zgroupby.<locals>.<lambda>)callablerL   collectionsdefaultdictr$   __self__)r3   seqr#   r2   r"   r(   r)   r   r   r   groupbyb  s    rR   c                 C   s   t t| S )zC The first element in a sequence

    >>> first('ABC')
    'A'
    )r@   r?   )rQ   r   r   r   first  s    rS   )NF)rN   rD   	functoolsr   collections.abcr   __all__r   r   r   r   r   r   r   r	   r
   r   r   r   r   r   r   rL   rR   rS   r   r   r   r   <module>   s*   :
'$