U
    L?h|                     @   s   d Z ddlmZmZmZmZ ddlmZmZ ddl	m
Z
mZmZ ddlmZmZmZ ddlmZmZmZ ddlmZ egZeeegZegZdd	 Zd
d Zdd Zdd Zdd ZdddZdd Z dd Z!dddZ"dS )z SymPy interface to Unification engine

See sympy.unify for module level docstring
See sympy.unify.core for algorithmic docstring     )BasicAddMulPow)AssocOp	LatticeOp)MatAddMatMul
MatrixExpr)UnionIntersection	FiniteSet)CompoundVariableCondVariable)corec                    s&   t tttttf}t fdd|D S )Nc                 3   s   | ]}t  |V  qd S N
issubclass).0Zaopop D/var/www/html/venv/lib/python3.8/site-packages/sympy/unify/usympy.py	<genexpr>   s     z$sympy_associative.<locals>.<genexpr>)r   r   r	   r   r   r   any)r   Z	assoc_opsr   r   r   sympy_associative   s    r   c                    s$   t ttttf}t fdd|D S )Nc                 3   s   | ]}t  |V  qd S r   r   )r   copr   r   r   r      s     z$sympy_commutative.<locals>.<genexpr>)r   r   r   r   r   r   )r   Zcomm_opsr   r   r   sympy_commutative   s    r   c                 C   s   t | tot| jS r   )
isinstancer   r   r   xr   r   r   is_associative   s    r"   c                 C   s@   t | tsdS t| jrdS t| jtr<tdd | jD S d S )NFTc                 s   s   | ]}t |jV  qd S r   )	constructis_commutativer   argr   r   r   r   "   s     z!is_commutative.<locals>.<genexpr>)r   r   r   r   r   r   allargsr    r   r   r   r$      s    

r$   c                    s    fdd}|S )Nc                    s    t |  pt | tot| j S r   )r   r   r   r   r    typr   r   	matchtype%   s    
zmk_matchtype.<locals>.matchtyper   )r*   r+   r   r)   r   mk_matchtype$   s    r,   r   c                    sV   |  krt | S t| t tfr"| S t| tr2| jr6| S t| jt fdd| jD S )z% Turn a SymPy object into a Compound c                 3   s   | ]}t | V  qd S r   deconstructr%   	variablesr   r   r   3   s     zdeconstruct.<locals>.<genexpr>)	r   r   r   r   Zis_Atomr   	__class__tupler(   )sr0   r   r/   r   r.   *   s    r.   c                    s   t  ttfr jS t  ts" S t fddtD rP jtt	 j
ddiS t fddtD rtj jftt	 j
 S  jtt	 j
 S dS )z% Turn a Compound into a SymPy object c                 3   s   | ]}t  j|V  qd S r   r   r   r   clstr   r   r   ;   s     zconstruct.<locals>.<genexpr>evaluateFc                 3   s   | ]}t  j|V  qd S r   r4   r5   r7   r   r   r   =   s     N)r   r   r   r&   r   r   eval_false_legalr   mapr#   r(   basic_new_legalr   __new__r7   r   r7   r   r#   5   s    
r#   c                 C   s   t t| S )z[ Rebuild a SymPy expression.

    This removes harm caused by Expr-Rules interactions.
    )r#   r.   )r3   r   r   r   rebuildB   s    r>   Nc                 +   sp   fdd |pi } fdd|  D }tj |  ||fttd|}|D ]}dd |  D V  qRdS )af   Structural unification of two expressions/patterns.

    Examples
    ========

    >>> from sympy.unify.usympy import unify
    >>> from sympy import Basic, S
    >>> from sympy.abc import x, y, z, p, q

    >>> next(unify(Basic(S(1), S(2)), Basic(S(1), x), variables=[x]))
    {x: 2}

    >>> expr = 2*x + y + z
    >>> pattern = 2*p + q
    >>> next(unify(expr, pattern, {}, variables=(p, q)))
    {p: x, q: y + z}

    Unification supports commutative and associative matching

    >>> expr = x + y + z
    >>> pattern = p + q
    >>> len(list(unify(expr, pattern, {}, variables=(p, q))))
    12

    Symbols not indicated to be variables are treated as literal,
    else they are wild-like and match anything in a sub-expression.

    >>> expr = x*y*z + 3
    >>> pattern = x*y + 3
    >>> next(unify(expr, pattern, {}, variables=[x, y]))
    {x: y, y: x*z}

    The x and y of the pattern above were in a Mul and matched factors
    in the Mul of expr. Here, a single symbol matches an entire term:

    >>> expr = x*y + 3
    >>> pattern = p + 3
    >>> next(unify(expr, pattern, {}, variables=[p]))
    {p: x*y}

    c                    s
   t |  S r   r-   r    r/   r   r   <lambda>s       zunify.<locals>.<lambda>c                    s   i | ]\}} | |qS r   r   r   kv)deconsr   r   
<dictcomp>u   s      zunify.<locals>.<dictcomp>)r"   r$   c                 S   s   i | ]\}}t |t |qS r   )r#   rA   r   r   r   rE   |   s      N)itemsr   unifyr"   r$   )r!   yr3   r0   kwargsZdsdr   )rD   r0   r   rG   I   s    *rG   )r   )Nr   )#__doc__Z
sympy.corer   r   r   r   Zsympy.core.operationsr   r   Zsympy.matricesr   r	   r
   Zsympy.sets.setsr   r   r   Zsympy.unify.corer   r   r   Zsympy.unifyr   r<   r:   illegalr   r   r"   r$   r,   r.   r#   r>   rG   r   r   r   r   <module>   s$   

