U
    L?hA+                     @   s@   d Z ddlmZ ddlmZ G dd deZG dd deZdS )	z-Computations with ideals of polynomial rings.    )CoercionFailed)IntegerPowerablec                   @   s  e Zd ZdZdd Zdd Zdd Zdd	 Zd
d Zdd Z	dd Z
dd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zd d! Zd"d# Zd$d% Zd&d' Zd(d) Zd*d+ Zd,d- Zd.d/ Zd0d1 Zd2d3 Zd4d5 ZeZd6d7 ZeZ d8d9 Z!d:d; Z"d<d= Z#d>d? Z$d@S )AIdeala  
    Abstract base class for ideals.

    Do not instantiate - use explicit constructors in the ring class instead:

    >>> from sympy import QQ
    >>> from sympy.abc import x
    >>> QQ.old_poly_ring(x).ideal(x+1)
    <x + 1>

    Attributes

    - ring - the ring this ideal belongs to

    Non-implemented methods:

    - _contains_elem
    - _contains_ideal
    - _quotient
    - _intersect
    - _union
    - _product
    - is_whole_ring
    - is_zero
    - is_prime, is_maximal, is_primary, is_radical
    - is_principal
    - height, depth
    - radical

    Methods that likely should be overridden in subclasses:

    - reduce_element
    c                 C   s   t dS )z&Implementation of element containment.NNotImplementedErrorselfx r
   I/var/www/html/venv/lib/python3.8/site-packages/sympy/polys/agca/ideals.py_contains_elem*   s    zIdeal._contains_elemc                 C   s   t dS )z$Implementation of ideal containment.Nr   )r   Ir
   r
   r   _contains_ideal.   s    zIdeal._contains_idealc                 C   s   t dS )z!Implementation of ideal quotient.Nr   r   Jr
   r
   r   	_quotient2   s    zIdeal._quotientc                 C   s   t dS )z%Implementation of ideal intersection.Nr   r   r
   r
   r   
_intersect6   s    zIdeal._intersectc                 C   s   t dS )z*Return True if ``self`` is the whole ring.Nr   r   r
   r
   r   is_whole_ring:   s    zIdeal.is_whole_ringc                 C   s   t dS )z*Return True if ``self`` is the zero ideal.Nr   r   r
   r
   r   is_zero>   s    zIdeal.is_zeroc                 C   s   |  |o| | S )z!Implementation of ideal equality.)r   r   r
   r
   r   _equalsB   s    zIdeal._equalsc                 C   s   t dS )z)Return True if ``self`` is a prime ideal.Nr   r   r
   r
   r   is_primeF   s    zIdeal.is_primec                 C   s   t dS )z+Return True if ``self`` is a maximal ideal.Nr   r   r
   r
   r   
is_maximalJ   s    zIdeal.is_maximalc                 C   s   t dS )z+Return True if ``self`` is a radical ideal.Nr   r   r
   r
   r   
is_radicalN   s    zIdeal.is_radicalc                 C   s   t dS )z+Return True if ``self`` is a primary ideal.Nr   r   r
   r
   r   
is_primaryR   s    zIdeal.is_primaryc                 C   s   t dS )z-Return True if ``self`` is a principal ideal.Nr   r   r
   r
   r   is_principalV   s    zIdeal.is_principalc                 C   s   t dS )z Compute the radical of ``self``.Nr   r   r
   r
   r   radicalZ   s    zIdeal.radicalc                 C   s   t dS )zCompute the depth of ``self``.Nr   r   r
   r
   r   depth^   s    zIdeal.depthc                 C   s   t dS )zCompute the height of ``self``.Nr   r   r
   r
   r   heightb   s    zIdeal.heightc                 C   s
   || _ d S N)ring)r   r    r
   r
   r   __init__j   s    zIdeal.__init__c                 C   s,   t |tr|j| jkr(td| j|f dS )z.Helper to check ``J`` is an ideal of our ring.z J must be an ideal of %s, got %sN)
isinstancer   r    
ValueErrorr   r
   r
   r   _check_idealm   s    zIdeal._check_idealc                 C   s   |  | j|S )aD  
        Return True if ``elem`` is an element of this ideal.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ
        >>> QQ.old_poly_ring(x).ideal(x+1, x-1).contains(3)
        True
        >>> QQ.old_poly_ring(x).ideal(x**2, x**3).contains(x)
        False
        )r   r    convert)r   elemr
   r
   r   containss   s    zIdeal.containsc                    s*   t |tr |S t fdd|D S )a  
        Returns True if ``other`` is is a subset of ``self``.

        Here ``other`` may be an ideal.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ
        >>> I = QQ.old_poly_ring(x).ideal(x+1)
        >>> I.subset([x**2 - 1, x**2 + 2*x + 1])
        True
        >>> I.subset([x**2 + 1, x + 1])
        False
        >>> I.subset(QQ.old_poly_ring(x).ideal(x**2 - 1))
        True
        c                 3   s   | ]}  |V  qd S r   )r   .0r	   r   r
   r   	<genexpr>   s     zIdeal.subset.<locals>.<genexpr>)r"   r   r   all)r   otherr
   r   r   subset   s    

zIdeal.subsetc                 K   s   |  | | j|f|S )a~  
        Compute the ideal quotient of ``self`` by ``J``.

        That is, if ``self`` is the ideal `I`, compute the set
        `I : J = \{x \in R | xJ \subset I \}`.

        Examples
        ========

        >>> from sympy.abc import x, y
        >>> from sympy import QQ
        >>> R = QQ.old_poly_ring(x, y)
        >>> R.ideal(x*y).quotient(R.ideal(x))
        <y>
        )r$   r   r   r   optsr
   r
   r   quotient   s    
zIdeal.quotientc                 C   s   |  | | |S )a  
        Compute the intersection of self with ideal J.

        Examples
        ========

        >>> from sympy.abc import x, y
        >>> from sympy import QQ
        >>> R = QQ.old_poly_ring(x, y)
        >>> R.ideal(x).intersect(R.ideal(y))
        <x*y>
        )r$   r   r   r
   r
   r   	intersect   s    
zIdeal.intersectc                 C   s   t dS )z
        Compute the ideal saturation of ``self`` by ``J``.

        That is, if ``self`` is the ideal `I`, compute the set
        `I : J^\infty = \{x \in R | xJ^n \subset I \text{ for some } n\}`.
        Nr   r   r
   r
   r   saturate   s    zIdeal.saturatec                 C   s   |  | | |S )aD  
        Compute the ideal generated by the union of ``self`` and ``J``.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ
        >>> QQ.old_poly_ring(x).ideal(x**2 - 1).union(QQ.old_poly_ring(x).ideal((x+1)**2)) == QQ.old_poly_ring(x).ideal(x+1)
        True
        )r$   _unionr   r
   r
   r   union   s    
zIdeal.unionc                 C   s   |  | | |S )a  
        Compute the ideal product of ``self`` and ``J``.

        That is, compute the ideal generated by products `xy`, for `x` an element
        of ``self`` and `y \in J`.

        Examples
        ========

        >>> from sympy.abc import x, y
        >>> from sympy import QQ
        >>> QQ.old_poly_ring(x, y).ideal(x).product(QQ.old_poly_ring(x, y).ideal(y))
        <x*y>
        )r$   _productr   r
   r
   r   product   s    
zIdeal.productc                 C   s   |S )z
        Reduce the element ``x`` of our ring modulo the ideal ``self``.

        Here "reduce" has no specific meaning: it could return a unique normal
        form, simplify the expression a bit, or just do nothing.
        r
   r   r
   r
   r   reduce_element   s    zIdeal.reduce_elementc                 C   sZ   t |tsF| j| }t ||jr&|S t ||jjr<||S ||S | | | |S r   )r"   r   r    Zquotient_ringZdtyper%   r$   r4   )r   eRr
   r
   r   __add__   s    


zIdeal.__add__c                 C   sH   t |ts4z| j|}W n tk
r2   t Y S X | | | |S r   )r"   r   r    idealr   NotImplementedr$   r6   r   r8   r
   r
   r   __mul__   s    


zIdeal.__mul__c                 C   s   | j dS N   )r    r;   r   r
   r
   r   _zeroth_power	  s    zIdeal._zeroth_powerc                 C   s   | d S r?   r
   r   r
   r
   r   _first_power  s    zIdeal._first_powerc                 C   s$   t |tr|j| jkrdS | |S )NF)r"   r   r    r   r=   r
   r
   r   __eq__  s    zIdeal.__eq__c                 C   s
   | |k S r   r
   r=   r
   r
   r   __ne__  s    zIdeal.__ne__N)%__name__
__module____qualname____doc__r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r!   r$   r'   r-   r0   r1   r2   r4   r6   r7   r:   __radd__r>   __rmul__rA   rB   rC   rD   r
   r
   r
   r   r      sD   "
		r   c                   @   s|   e Zd ZdZdd Zdd Zdd Zdd	 Zd
d Zdd Z	e
dd Zdd Zdd Zdd Zdd Zdd Zdd ZdS )ModuleImplementedIdealzs
    Ideal implementation relying on the modules code.

    Attributes:

    - _module - the underlying module
    c                 C   s   t | | || _d S r   )r   r!   _module)r   r    moduler
   r
   r   r!   #  s    zModuleImplementedIdeal.__init__c                 C   s   | j |gS r   )rL   r'   r   r
   r
   r   r   '  s    z%ModuleImplementedIdeal._contains_elemc                 C   s   t |tst| j|jS r   )r"   rK   r   rL   Zis_submoduler   r
   r
   r   r   *  s    
z&ModuleImplementedIdeal._contains_idealc                 C   s&   t |tst| | j| j|jS r   )r"   rK   r   	__class__r    rL   r1   r   r
   r
   r   r   /  s    
z!ModuleImplementedIdeal._intersectc                 K   s    t |tst| jj|jf|S r   )r"   rK   r   rL   Zmodule_quotientr.   r
   r
   r   r   4  s    
z ModuleImplementedIdeal._quotientc                 C   s&   t |tst| | j| j|jS r   )r"   rK   r   rN   r    rL   r4   r   r
   r
   r   r3   9  s    
zModuleImplementedIdeal._unionc                 C   s   dd | j jD S )aB  
        Return generators for ``self``.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.abc import x, y
        >>> list(QQ.old_poly_ring(x, y).ideal(x, y, x**2 + y).gens)
        [DMP_Python([[1], []], QQ), DMP_Python([[1, 0]], QQ), DMP_Python([[1], [], [1, 0]], QQ)]
        c                 s   s   | ]}|d  V  qdS )r   Nr
   r(   r
   r
   r   r*   K  s     z.ModuleImplementedIdeal.gens.<locals>.<genexpr>rL   gensr   r
   r
   r   rP   >  s    zModuleImplementedIdeal.gensc                 C   s
   | j  S )a%  
        Return True if ``self`` is the zero ideal.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ
        >>> QQ.old_poly_ring(x).ideal(x).is_zero()
        False
        >>> QQ.old_poly_ring(x).ideal().is_zero()
        True
        )rL   r   r   r
   r
   r   r   M  s    zModuleImplementedIdeal.is_zeroc                 C   s
   | j  S )a  
        Return True if ``self`` is the whole ring, i.e. one generator is a unit.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ, ilex
        >>> QQ.old_poly_ring(x).ideal(x).is_whole_ring()
        False
        >>> QQ.old_poly_ring(x).ideal(3).is_whole_ring()
        True
        >>> QQ.old_poly_ring(x, order=ilex).ideal(2 + x).is_whole_ring()
        True
        )rL   Zis_full_moduler   r
   r
   r   r   ]  s    z$ModuleImplementedIdeal.is_whole_ringc                    sB   ddl m  fdd jjD }ddfdd|D  d	 S )
Nr   sstrc                    s   g | ]\} j |qS r
   )r    Zto_sympyr(   r   r
   r   
<listcomp>q  s     z3ModuleImplementedIdeal.__repr__.<locals>.<listcomp><,c                 3   s   | ]} |V  qd S r   r
   )r)   grQ   r
   r   r*   r  s     z2ModuleImplementedIdeal.__repr__.<locals>.<genexpr>>)Zsympy.printing.strrR   rL   rP   join)r   rP   r
   )r   rR   r   __repr__o  s    zModuleImplementedIdeal.__repr__c                    s6   t  tst| | j| jj fdd| jjD  S )Nc                    s(   g | ] \} j jD ]\}|| gqqS r
   rO   )r)   r	   yr   r
   r   rS   y  s     
  z3ModuleImplementedIdeal._product.<locals>.<listcomp>)r"   rK   r   rN   r    rL   	submodulerP   r   r
   r[   r   r5   u  s
    
zModuleImplementedIdeal._productc                 C   s   | j |gS )aX  
        Express ``e`` in terms of the generators of ``self``.

        Examples
        ========

        >>> from sympy.abc import x
        >>> from sympy import QQ
        >>> I = QQ.old_poly_ring(x).ideal(x**2 + 1, x)
        >>> I.in_terms_of_generators(1)  # doctest: +SKIP
        [DMP_Python([1], QQ), DMP_Python([-1, 0], QQ)]
        )rL   in_terms_of_generatorsr=   r
   r
   r   r]   {  s    z-ModuleImplementedIdeal.in_terms_of_generatorsc                 K   s   | j j|gf|d S )Nr   )rL   r7   )r   r	   optionsr
   r
   r   r7     s    z%ModuleImplementedIdeal.reduce_elementN)rE   rF   rG   rH   r!   r   r   r   r   r3   propertyrP   r   r   rY   r5   r]   r7   r
   r
   r
   r   rK     s   
rK   N)rH   Zsympy.polys.polyerrorsr   Zsympy.polys.polyutilsr   r   rK   r
   r
   r
   r   <module>   s     