U
    L?h'                     @   s:  d Z ddlmZ ddlmZmZmZmZmZm	Z	m
Z
mZ ddlmZmZ ddlmZ ddlmZ dd Zed3ddZdd Zd4ddZdd Zdd Zdd Zdd Zed5ddZed6ddZdd Zdd  Zed7d!d"Zed8d#d$Z d%d& Z!ed9d'd(Z"d)d* Z#ed:d+d,Z$d-d. Z%d/d0 Z&d;d1d2Z'd	S )<z:Efficient functions for generating orthogonal polynomials.    )Dummy)dup_muldup_mul_ground
dup_lshiftdup_subdup_adddup_sub_termdup_sub_grounddup_sqr)ZZQQ)
named_poly)publicc                 C   s  | dk r|j gS |j g|| |d |j  || |d g }}td| d D ]:}|||| |  || |d|  |d  }|| |d|  |j  || ||   |d|  }|| |d|  |j  || |d|  |d  || |d|   |d|  }	|| |j  || |j   || |d|   | }
t|||}tt|d||	|}t||
|}|tt||||| }}qN|S )z/Low-level implementation of Jacobi polynomials.      )oneranger   r   r   r   )nabKm2m1iZdenZf0f1f2p0p1p2 r   H/var/www/html/venv/lib/python3.8/site-packages/sympy/polys/orthopolys.py
dup_jacobi	   s    006V4r!   NFc                 C   s   t | tdd|||f|S )a  Generates the Jacobi polynomial `P_n^{(a,b)}(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    a
        Lower limit of minimal domain for the list of coefficients.
    b
        Upper limit of minimal domain for the list of coefficients.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    NzJacobi polynomial)r   r!   )r   r   r   xpolysr   r   r    jacobi_poly   s    r$   c                 C   s   | dk r|j gS |j g|d| |jg }}td| d D ]p}tt|d||d||j   || |d |}t||d||j   || |j  |}|t||| }}q:|S )z3Low-level implementation of Gegenbauer polynomials.r   r   r   zeror   r   r   r   )r   r   r   r   r   r   r   r   r   r   r    dup_gegenbauer,   s    2(r'   c                 C   s   t | tdd||f|S )a?  Generates the Gegenbauer polynomial `C_n^{(a)}(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    a
        Decides minimal domain for the list of coefficients.
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    NzGegenbauer polynomial)r   r'   )r   r   r"   r#   r   r   r    gegenbauer_poly7   s    r(   c                 C   s,   | dk r|j gS | dk r"t| |S t| |S )zDLow-level implementation of Chebyshev polynomials of the first kind.r   @   )r   _dup_chebyshevt_rec_dup_chebyshevt_prod)r   r   r   r   r    dup_chebyshevtG   s
    
r,   c                 C   sR   |j g|j |jg }}t| d D ]*}|ttt|d||d||| }}q"|S )a   Chebyshev polynomials of the first kind using recurrence.

    Explanation
    ===========

    Chebyshev polynomials of the first kind are defined by the recurrence
    relation:

    .. math::
        T_0(x) &= 1\\
        T_1(x) &= x\\
        T_n(x) &= 2xT_{n-1}(x) - T_{n-2}(x)

    This function calculates the Chebyshev polynomial of the first kind using
    the above recurrence relation.

    Parameters
    ==========

    n : int
        n is a nonnegative integer.
    K : domain

    r   r   r   r&   r   r   r   r   )r   r   r   r   _r   r   r    r*   P   s    (r*   c                 C   s   |j |jg|d|j|j  g }}t| dd D ]~}ttt||||d||j d|}|dkr|ttt|||d||j | }}q2ttt|||d||j || }}q2|S )a   Chebyshev polynomials of the first kind using recursive products.

    Explanation
    ===========

    Computes Chebyshev polynomials of the first kind using

    .. math::
        T_{2n}(x) &= 2T_n^2(x) - 1\\
        T_{2n+1}(x) &= 2T_{n+1}(x)T_n(x) - x

    This is faster than ``_dup_chebyshevt_rec`` for large ``n``.

    Parameters
    ==========

    n : int
        n is a nonnegative integer.
    K : domain

    r      Nr   1)r   r&   binr   r   r   r	   r
   )r   r   r   r   r   cr   r   r    r+   n   s    "$((r+   c                 C   sf   | dk r|j gS |j g|d|jg }}td| d D ]*}|ttt|d||d||| }}q6|S )zELow-level implementation of Chebyshev polynomials of the second kind.r   r   r-   r   r   r   r   r   r   r   r    dup_chebyshevu   s    (r4   c                 C   s   t | ttd|f|S )a  Generates the Chebyshev polynomial of the first kind `T_n(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    z&Chebyshev polynomial of the first kind)r   r,   r   r   r"   r#   r   r   r    chebyshevt_poly   s
      r6   c                 C   s   t | ttd|f|S )a  Generates the Chebyshev polynomial of the second kind `U_n(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    z'Chebyshev polynomial of the second kind)r   r4   r   r5   r   r   r    chebyshevu_poly   s
      r7   c                 C   s~   | dk r|j gS |j g|d|jg }}td| d D ]B}t|d|}t|||d |}|tt||||d| }}q6|S )z0Low-level implementation of Hermite polynomials.r   r   r   r&   r   r   r   r   r   r   r   r   r   r   r   r   r   r    dup_hermite   s     r:   c                 C   sp   | dk r|j gS |j g|j |jg }}td| d D ]6}t|d|}t|||d |}|t||| }}q4|S )z>Low-level implementation of probabilist's Hermite polynomials.r   r   r8   r9   r   r   r    dup_hermite_prob   s    r;   c                 C   s   t | ttd|f|S )zGenerates the Hermite polynomial `H_n(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    zHermite polynomial)r   r:   r   r5   r   r   r    hermite_poly   s    r<   c                 C   s   t | ttd|f|S )a  Generates the probabilist's Hermite polynomial `He_n(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    z probabilist's Hermite polynomial)r   r;   r   r5   r   r   r    hermite_prob_poly   s
      r=   c                 C   s   | dk r|j gS |j g|j |jg }}td| d D ]N}tt|d||d| d ||}t|||d ||}|t||| }}q4|S )z1Low-level implementation of Legendre polynomials.r   r   r%   r9   r   r   r    dup_legendre   s    "r>   c                 C   s   t | ttd|f|S )zGenerates the Legendre polynomial `P_n(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    zLegendre polynomial)r   r>   r   r5   r   r   r    legendre_poly   s    r?   c                 C   s   |j g|jg }}td| d D ]h}t||j || ||j || |d g|}t|||j || |j |}|t||| }}q |S )z1Low-level implementation of Laguerre polynomials.r   r   )r&   r   r   r   r   r   )r   alphar   r   r   r   r   r   r   r   r    dup_laguerre  s    2 rA   c                 C   s   t | tdd||f|S )aQ  Generates the Laguerre polynomial `L_n^{(\alpha)}(x)`.

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    alpha : optional
        Decides minimal domain for the list of coefficients.
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    NzLaguerre polynomial)r   rA   )r   r"   r@   r#   r   r   r    laguerre_poly  s    rB   c                 C   sx   | dk r|j |jgS |j g|j |jg }}td| d D ]2}|ttt|d||d| d ||| }}q8t|d|S )z%Low-level implementation of fn(n, x).r   r   r-   r3   r   r   r    dup_spherical_bessel_fn  s    0rC   c              	   C   s\   |j |jg|jg }}td| d D ]2}|ttt|d||dd|  ||| }}q$|S )z&Low-level implementation of fn(-n, x).r   r   r/   r-   r3   r   r   r    dup_spherical_bessel_fn_minus(  s    0rD   c                 C   s@   |dkrt d}| dk rtnt}tt| |tdtd| f|S )a  
    Coefficients for the spherical Bessel functions.

    These are only needed in the jn() function.

    The coefficients are calculated from:

    fn(0, z) = 1/z
    fn(1, z) = 1/z**2
    fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z)

    Parameters
    ==========

    n : int
        Degree of the polynomial.
    x : optional
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.

    Examples
    ========

    >>> from sympy.polys.orthopolys import spherical_bessel_fn as fn
    >>> from sympy import Symbol
    >>> z = Symbol("z")
    >>> fn(1, z)
    z**(-2)
    >>> fn(2, z)
    -1/z + 3/z**3
    >>> fn(3, z)
    -6/z**2 + 15/z**4
    >>> fn(4, z)
    1/z - 45/z**3 + 105/z**5

    Nr"   r    r   )r   rD   rC   r   absr   r   )r   r"   r#   fr   r   r    spherical_bessel_fn/  s    %rH   )NF)NF)NF)NF)NF)NF)NF)Nr   F)NF)(__doc__Zsympy.core.symbolr   Zsympy.polys.densearithr   r   r   r   r   r   r	   r
   Zsympy.polys.domainsr   r   Zsympy.polys.polytoolsr   Zsympy.utilitiesr   r!   r$   r'   r(   r,   r*   r+   r4   r6   r7   r:   r;   r<   r=   r>   r?   rA   rB   rC   rD   rH   r   r   r   r    <module>   sB   (
				