U
    L?hU
                     @   s`   d dl mZ d dlmZ G dd deZdd Zd dlmZmZ d dl	m
Z
 d	d
 Zee
d< dS )    )Basic)
MatrixExprc                   @   sv   e Zd ZdZdZdd Zedd Zedd Zdd
dZ	dd Z
dd Zdd Zdd Zdd Zdd Zdd ZdS )	Transposea1  
    The transpose of a matrix expression.

    This is a symbolic object that simply stores its argument without
    evaluating it. To actually compute the transpose, use the ``transpose()``
    function, or the ``.T`` attribute of matrices.

    Examples
    ========

    >>> from sympy import MatrixSymbol, Transpose, transpose
    >>> A = MatrixSymbol('A', 3, 5)
    >>> B = MatrixSymbol('B', 5, 3)
    >>> Transpose(A)
    A.T
    >>> A.T == transpose(A) == Transpose(A)
    True
    >>> Transpose(A*B)
    (A*B).T
    >>> transpose(A*B)
    B.T*A.T

    Tc                 K   sb   | j }|ddr(t|tr(|jf |}t|dd }|d k	rV| }|d k	rN|S t|S t|S d S )NdeepT_eval_transpose)argget
isinstancer   doitgetattrr   )selfhintsr   r   result r   V/var/www/html/venv/lib/python3.8/site-packages/sympy/matrices/expressions/transpose.pyr
      s    zTranspose.doitc                 C   s
   | j d S )Nr   )argsr   r   r   r   r   *   s    zTranspose.argc                 C   s   | j jd d d S )N)r   shaper   r   r   r   r   .   s    zTranspose.shapeFc                 K   s   | j j||fd|i|S )Nexpand)r   _entry)r   ijr   kwargsr   r   r   r   2   s    zTranspose._entryc                 C   s
   | j  S N)r   	conjugater   r   r   r   _eval_adjoint5   s    zTranspose._eval_adjointc                 C   s
   | j  S r   )r   Zadjointr   r   r   r   _eval_conjugate8   s    zTranspose._eval_conjugatec                 C   s   | j S r   )r   r   r   r   r   r   ;   s    zTranspose._eval_transposec                 C   s   ddl m} || jS )N   )Trace)tracer   r   )r   r   r   r   r   _eval_trace>   s    zTranspose._eval_tracec                 C   s   ddl m} || jS )Nr   )det)Z&sympy.matrices.expressions.determinantr"   r   )r   r"   r   r   r   _eval_determinantB   s    zTranspose._eval_determinantc                 C   s   | j |S r   )r   _eval_derivative)r   xr   r   r   r$   F   s    zTranspose._eval_derivativec                 C   s   | j d |}dd |D S )Nr   c                 S   s   g | ]}|  qS r   )	transpose).0r   r   r   r   
<listcomp>L   s     z;Transpose._eval_derivative_matrix_lines.<locals>.<listcomp>)r   _eval_derivative_matrix_lines)r   r%   linesr   r   r   r)   J   s    z'Transpose._eval_derivative_matrix_linesN)F)__name__
__module____qualname____doc__Zis_Transposer
   propertyr   r   r   r   r   r   r!   r#   r$   r)   r   r   r   r   r      s   


r   c                 C   s   t | jddS )zMatrix transposeF)r   )r   r
   )exprr   r   r   r&   O   s    r&   )askQ)handlers_dictc                 C   s   t t| |r| jS | S )z
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> X.T
    X.T
    >>> with assuming(Q.symmetric(X)):
    ...     print(refine(X.T))
    X
    )r1   r2   Z	symmetricr   )r0   Zassumptionsr   r   r   refine_TransposeX   s    
r4   N)Zsympy.core.basicr   Z"sympy.matrices.expressions.matexprr   r   r&   Zsympy.assumptions.askr1   r2   Zsympy.assumptions.refiner3   r4   r   r   r   r   <module>   s   J