U
    L?h                     @   s  d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZmZ d dlmZmZ d dlmZmZmZ d d	lmZ d d
lmZmZmZ d dlmZ d dlmZ d dlm Z m!Z!m"Z"m#Z# d dl$m%Z% d dl&m'Z'm(Z( d dl)m*Z*m+Z+m,Z, d dl-m.Z.m/Z/m0Z0m1Z1m2Z2 d dl3m4Z4m5Z5m6Z6 d dl7m8Z8 d dl9m:Z: d dl;m<Z<m=Z= G dd deZ>G dd de>Z?G dd de>Z@G dd de>ZAG dd de>ZBG d d! d!e>ZCG d"d# d#e>ZDd$d% ZEG d&d' d'e>ZFd(d) ZGd*d+ ZHG d,d- d-eFZIG d.d/ d/eFZJG d0d1 d1eFZKG d2d3 d3eKZLG d4d5 d5eKZMdGd8d9ZNG d:d; d;eZOG d<d= d=eOZPG d>d? d?eOZQG d@dA dAeOZRG dBdC dCeOZSG dDdE dEeZTdFS )H    wraps)S)Add)cacheit)Expr)FunctionArgumentIndexError_mexpand)fuzzy_or	fuzzy_not)RationalpiI)Pow)Dummyuniquely_named_symbolWild)sympify)	factorial)sincoscsccot)ceiling)explog)cbrtsqrtroot)Absreim
polar_lift
unpolarify)gammadigamma
uppergamma)hyper)spherical_bessel_fn)mpworkprecc                   @   s^   e Zd ZdZedd Zedd Zedd Zdd	d
Z	dd Z
dd Zdd Zdd ZdS )
BesselBasea  
    Abstract base class for Bessel-type functions.

    This class is meant to reduce code duplication.
    All Bessel-type functions can 1) be differentiated, with the derivatives
    expressed in terms of similar functions, and 2) be rewritten in terms
    of other Bessel-type functions.

    Here, Bessel-type functions are assumed to have one complex parameter.

    To use this base class, define class attributes ``_a`` and ``_b`` such that
    ``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``.

    c                 C   s
   | j d S )z( The order of the Bessel-type function. r   argsself r1   P/var/www/html/venv/lib/python3.8/site-packages/sympy/functions/special/bessel.pyorder4   s    zBesselBase.orderc                 C   s
   | j d S )z+ The argument of the Bessel-type function.    r-   r/   r1   r1   r2   argument9   s    zBesselBase.argumentc                 C   s   d S Nr1   clsnuzr1   r1   r2   eval>   s    zBesselBase.eval   c                 C   sN   |dkrt | || jd | | jd | j | jd | | jd | j  S Nr<   r4   )r	   _b	__class__r3   r5   _ar0   argindexr1   r1   r2   fdiffB   s
    
zBesselBase.fdiffc                 C   s*   | j }|jdkr&| | j | S d S NF)r5   is_extended_negativer?   r3   	conjugater0   r:   r1   r1   r2   _eval_conjugateH   s    
zBesselBase._eval_conjugatec                 C   sx   | j | j }}||rdS |||s,d S |||}|jrdt| ttt	t
ttfsZ|jsdt|jS tt|j|jgS rD   )r3   r5   has_eval_is_meromorphicsubs
is_integer
isinstancebesseljbesselihn1hn2jnynis_zeror   is_infiniter   )r0   xar9   r:   Zz0r1   r1   r2   rJ   M   s    

zBesselBase._eval_is_meromorphicc                 K   s   | j | j| j  }}}|jr|d jrn| j | j ||d |  d| j |d  ||d |  |  S |d jrd| j |d  ||d |  | | j| j ||d |   S | S Nr4   r<   )	r3   r5   r?   Zis_realis_positiver@   r>   _eval_expand_funcis_negative)r0   hintsr9   r:   fr1   r1   r2   rZ   Z   s    
&
&zBesselBase._eval_expand_funcc                 K   s   ddl m} || S )Nr   )
besselsimp)Zsympy.simplify.simplifyr^   )r0   kwargsr^   r1   r1   r2   _eval_simplifye   s    zBesselBase._eval_simplifyN)r<   )__name__
__module____qualname____doc__propertyr3   r5   classmethodr;   rC   rH   rJ   rZ   r`   r1   r1   r1   r2   r,   $   s   



r,   c                       sh   e Zd ZdZejZejZedd Z	dd Z
dd Zdd	 Zd fdd	Zdd Zd fdd	Z  ZS )rN   a4  
    Bessel function of the first kind.

    Explanation
    ===========

    The Bessel $J$ function of order $\nu$ is defined to be the function
    satisfying Bessel's differential equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
        + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0,

    with Laurent expansion

    .. math ::
        J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right),

    if $\nu$ is not a negative integer. If $\nu=-n \in \mathbb{Z}_{<0}$
    *is* a negative integer, then the definition is

    .. math ::
        J_{-n}(z) = (-1)^n J_n(z).

    Examples
    ========

    Create a Bessel function object:

    >>> from sympy import besselj, jn
    >>> from sympy.abc import z, n
    >>> b = besselj(n, z)

    Differentiate it:

    >>> b.diff(z)
    besselj(n - 1, z)/2 - besselj(n + 1, z)/2

    Rewrite in terms of spherical Bessel functions:

    >>> b.rewrite(jn)
    sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)

    Access the parameter and argument:

    >>> b.order
    n
    >>> b.argument
    z

    See Also
    ========

    bessely, besseli, besselk

    References
    ==========

    .. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9",
           Handbook of Mathematical Functions with Formulas, Graphs, and
           Mathematical Tables
    .. [2] Luke, Y. L. (1969), The Special Functions and Their
           Approximations, Volume 1
    .. [3] https://en.wikipedia.org/wiki/Bessel_function
    .. [4] https://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/

    c                 C   sZ  |j rX|j rtjS |jr"|j dks,t|jr2tjS t|jrL|jdk	rLtjS |j	rXtj
S |tjtjfkrntjS | r|| | |   t||  S |jr| rtj|  t| | S |t}|rt| t|| S |jrt|}||kr:t||S n8| \}}|dkr:td| t | t t|| S t|}||krVt||S d S )NFTr   r<   )rT   r   OnerL   r!   rY   Zeror[   ComplexInfinityis_imaginaryNaNInfinityNegativeInfinitycould_extract_minus_signrN   NegativeOneextract_multiplicativelyr   rO   r$   extract_branch_factorr   r   r8   r9   r:   ZnewznZnnur1   r1   r2   r;      s:     


"
zbesselj.evalc                 K   s(   t tt | d t|tt |  S Nr<   )r   r   r   rO   r#   r0   r9   r:   r_   r1   r1   r2   _eval_rewrite_as_besseli   s    z besselj._eval_rewrite_as_besselic                 K   s<   |j dkr8tt| t| | tt| t||  S d S rD   )rL   r   r   besselyr   ru   r1   r1   r2   _eval_rewrite_as_bessely   s    
z besselj._eval_rewrite_as_besselyc                 K   s"   t d| t t|tj | j S rt   )r   r   rR   r   Halfr5   ru   r1   r1   r2   _eval_rewrite_as_jn   s    zbesselj._eval_rewrite_as_jnNr   c           
         s   | j \}}z||}W n tk
r0   |  Y S X ||\}}|jrb|| d| t|d   S |jr|dkrtdn|}|||  }	|	jstdt|t	d| d  d   tt	|  S | S t
t| |||S )Nr<   r4   r      )r.   as_leading_termNotImplementedErroras_coeff_exponentrY   r%   r[   r   r   r   superrN   _eval_as_leading_term
r0   rV   logxcdirr9   r:   argcesignr?   r1   r2   r      s    

0zbesselj._eval_as_leading_termc                 C   s   | j \}}|jr|jrdS d S NTr.   rL   is_extended_realr0   r9   r:   r1   r1   r2   _eval_is_extended_real   s    
zbesselj._eval_is_extended_realc              	      s&  ddl m} | j\}}z||\}}	W n ttfk
rD   |  Y S X |	jrt||	 }
||| |}|d ||||	 }|t
jkr|S t|d | 	 }|| t|d  }|g}td|
d d D ]4}|| |||   9 }t|| 	 }|| qt| | S tt| ||||S Nr   Orderr<   r4   )sympy.series.orderr   r.   leadterm
ValueErrorr}   rY   r   _eval_nseriesremoveOr   rh   r
   r%   rangeappendr   r   rN   r0   rV   rs   r   r   r   r9   r:   _r   newnorttermskr   r1   r2   r      s*    


zbesselj._eval_nseries)Nr   )r   )ra   rb   rc   rd   r   rg   r@   r>   rf   r;   rv   rx   rz   r   r   r   __classcell__r1   r1   r   r2   rN   j   s   D
#rN   c                       sh   e Zd ZdZejZejZedd Z	dd Z
dd Zdd	 Zd fdd	Zdd Zd fdd	Z  ZS )rw   a`  
    Bessel function of the second kind.

    Explanation
    ===========

    The Bessel $Y$ function of order $\nu$ is defined as

    .. math ::
        Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu)
                                            - J_{-\mu}(z)}{\sin(\pi \mu)},

    where $J_\mu(z)$ is the Bessel function of the first kind.

    It is a solution to Bessel's equation, and linearly independent from
    $J_\nu$.

    Examples
    ========

    >>> from sympy import bessely, yn
    >>> from sympy.abc import z, n
    >>> b = bessely(n, z)
    >>> b.diff(z)
    bessely(n - 1, z)/2 - bessely(n + 1, z)/2
    >>> b.rewrite(yn)
    sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)

    See Also
    ========

    besselj, besseli, besselk

    References
    ==========

    .. [1] https://functions.wolfram.com/Bessel-TypeFunctions/BesselY/

    c                 C   s   |j r6|j rtjS t|j dkr&tjS t|j r6tjS |tjtjfkrLtjS |ttj krxt	tt
 |d  d tj S |ttj krt	t t
 |d  d tj S |jr| rtj|  t| | S d S )NFr4   r<   )rT   r   rm   r!   ri   rk   rl   rh   r   r   r   rL   rn   ro   rw   r7   r1   r1   r2   r;   F  s     
 zbessely.evalc                 K   s<   |j dkr8tt| tt| t|| t| |  S d S rD   )rL   r   r   r   rN   ru   r1   r1   r2   _eval_rewrite_as_besseljZ  s    
z bessely._eval_rewrite_as_besseljc                 K   s   | j | j }|r|tS d S r6   )r   r.   rewriterO   r0   r9   r:   r_   Zajr1   r1   r2   rv   ^  s    z bessely._eval_rewrite_as_besselic                 K   s"   t d| t t|tj | j S rt   )r   r   rS   r   ry   r5   ru   r1   r1   r2   _eval_rewrite_as_ync  s    zbessely._eval_rewrite_as_ynNr   c                    s~  | j \}}z||}W n tk
r0   |  Y S X ||\}}|jrdt t|d  t|| }	|jr|d |   t|d  t nt	j
}
|d |  tt|  t|d t	j  }t|	|
|g j||d}|S |jrj|dkrdn|}|||  }|jsftdtt| d | td   dtt| d | td   d|    td|  tt S | S tt| |||S )Nr<   r4   r   r   r{         )r.   r|   r}   r~   rY   r   r   rN   r   r   rh   r&   
EulerGammar   r[   r   r   r   r   rw   r   )r0   rV   r   r   r9   r:   r   r   r   term_oneterm_two
term_threer   r   r1   r2   r   f  s&    

,,bzbessely._eval_as_leading_termc                 C   s   | j \}}|jr|jrdS d S r   r.   rL   rY   r   r1   r1   r2   r     s    
zbessely._eval_is_extended_realc              	      s8  ddl m} | j\}}z||\}}	W n ttfk
rD   |  Y S X |	jr"|jr"t||	 }
t	||}dt
 t|d  | ||||}g g  }}||| |}|d |||| }|tjkr|S t|d |  }|tjkrp||  t|d  t
 }|| td|D ]R}|| | }|tjkrF||| 9 }n||| 9 }t||  }|| q|| t
t|  }|t|d tj  }|| td|
d d D ]V}|| |||   9 }t||  }|t|| d t|d   }|| q|t|  t|  S tt| ||||S r   )r   r   r.   r   r   r}   rY   rL   r   rN   r   r   r   r   r   rh   r
   r   r   r   r&   r   r   r   rw   r0   rV   rs   r   r   r   r9   r:   r   r   r   ZbnrW   br   r   r   r   r   r   denompr   r1   r2   r     sH    


$



 zbessely._eval_nseries)Nr   )r   )ra   rb   rc   rd   r   rg   r@   r>   rf   r;   r   rv   r   r   r   r   r   r1   r1   r   r2   rw     s   (
rw   c                       sj   e Zd ZdZej ZejZedd Z	dd Z
dd Zdd	 Zd
d Zd fdd	Zd fdd	Z  ZS )rO   a  
    Modified Bessel function of the first kind.

    Explanation
    ===========

    The Bessel $I$ function is a solution to the modified Bessel equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
        + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0.

    It can be defined as

    .. math ::
        I_\nu(z) = i^{-\nu} J_\nu(iz),

    where $J_\nu(z)$ is the Bessel function of the first kind.

    Examples
    ========

    >>> from sympy import besseli
    >>> from sympy.abc import z, n
    >>> besseli(n, z).diff(z)
    besseli(n - 1, z)/2 + besseli(n + 1, z)/2

    See Also
    ========

    besselj, bessely, besselk

    References
    ==========

    .. [1] https://functions.wolfram.com/Bessel-TypeFunctions/BesselI/

    c                 C   s  |j rX|j rtjS |jr"|j dks,t|jr2tjS t|jrL|jdk	rLtjS |j	rXtj
S t|tjtjfkrrtjS |tjkrtjS |tjkrd| tj S | r|| | |   t||  S |jr| rt| |S |t}|rt|  t||  S |jr*t|}||krbt||S n8| \}}|dkrbtd| t | t t|| S t|}||kr~t||S d S )NFTr   r<   )rT   r   rg   rL   r!   rY   rh   r[   ri   rj   rk   r"   rl   rm   rn   rO   rp   r   rN   r$   rq   r   r   rr   r1   r1   r2   r;     sB    

 


"
zbesseli.evalc                 K   s(   t t t | d t|tt|  S rt   )r   r   r   rN   r#   ru   r1   r1   r2   r   	  s    z besseli._eval_rewrite_as_besseljc                 K   s   | j | j }|r|tS d S r6   r   r.   r   rw   r   r1   r1   r2   rx     s    z besseli._eval_rewrite_as_besselyc                 K   s   | j | j tS r6   )r   r.   r   rR   ru   r1   r1   r2   rz     s    zbesseli._eval_rewrite_as_jnc                 C   s   | j \}}|jr|jrdS d S r   r   r   r1   r1   r2   r     s    
zbesseli._eval_is_extended_realNr   c           
         s   | j \}}z||}W n tk
r0   |  Y S X ||\}}|jrb|| d| t|d   S |jr|dkrtdn|}|||  }	|	jst|tdt	 |  S | S t
t| |||S Nr<   r4   r   )r.   r|   r}   r~   rY   r%   r[   r   r   r   r   rO   r   r   r   r1   r2   r     s    

zbesseli._eval_as_leading_termc              	      s$  ddl m} | j\}}z||\}}	W n ttfk
rD   |  Y S X |	jrt||	 }
||| |}|d ||||	 }|t
jkr|S t|d | 	 }|| t|d  }|g}td|
d d D ]2}|||||   9 }t|| 	 }|| qt| | S tt| ||||S r   )r   r   r.   r   r   r}   rY   r   r   r   r   rh   r
   r%   r   r   r   r   rO   r   r   r1   r2   r   .  s*    


zbesseli._eval_nseries)Nr   )r   )ra   rb   rc   rd   r   rg   r@   r>   rf   r;   r   rx   rz   r   r   r   r   r1   r1   r   r2   rO     s   '
'rO   c                       sr   e Zd ZdZejZej Zedd Z	dd Z
dd Zdd	 Zd
d Zdd Zd fdd	Zd fdd	Z  ZS )besselka  
    Modified Bessel function of the second kind.

    Explanation
    ===========

    The Bessel $K$ function of order $\nu$ is defined as

    .. math ::
        K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2}
                   \frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)},

    where $I_\mu(z)$ is the modified Bessel function of the first kind.

    It is a solution of the modified Bessel equation, and linearly independent
    from $Y_\nu$.

    Examples
    ========

    >>> from sympy import besselk
    >>> from sympy.abc import z, n
    >>> besselk(n, z).diff(z)
    -besselk(n - 1, z)/2 - besselk(n + 1, z)/2

    See Also
    ========

    besselj, besseli, bessely

    References
    ==========

    .. [1] https://functions.wolfram.com/Bessel-TypeFunctions/BesselK/

    c                 C   sv   |j r6|j rtjS t|j dkr&tjS t|j r6tjS |tjttj ttj fkrXtjS |j	rr|
 rrt| |S d S rD   )rT   r   rl   r!   ri   rk   r   rm   rh   rL   rn   r   r7   r1   r1   r2   r;   w  s    
zbesselk.evalc                 K   s8   |j dkr4ttt|  t| |t||  d S d S )NFr<   )rL   r   r   rO   ru   r1   r1   r2   rv     s    
z besselk._eval_rewrite_as_besselic                 K   s   | j | j }|r|tS d S r6   )rv   r.   r   rN   )r0   r9   r:   r_   Zair1   r1   r2   r     s    z besselk._eval_rewrite_as_besseljc                 K   s   | j | j }|r|tS d S r6   r   r   r1   r1   r2   rx     s    z besselk._eval_rewrite_as_besselyc                 K   s   | j | j }|r|tS d S r6   )rx   r.   r   rS   )r0   r9   r:   r_   Zayr1   r1   r2   r     s    zbesselk._eval_rewrite_as_ync                 C   s   | j \}}|jr|jrdS d S r   r   r   r1   r1   r2   r     s    
zbesselk._eval_is_extended_realNr   c                    s  | j \}}z||}W n tk
r0   |  Y S X ||\}}|jrd|d  t|d  t|| }	|jr|d |  t|d  d ntj	}
d| |d |  dt|  t
|d tj  }t|	|
|g j||d}|S |jrttt|  td|  S tt| |||S )Nr   r4   r<   r   )r.   r|   r}   r~   rY   r   rO   r   r   rh   r&   r   r   r[   r   r   r   r   r   r   )r0   rV   r   r   r9   r:   r   r   r   r   r   r   r   r1   r2   r     s    

"*2zbesselk._eval_as_leading_termc              	      sB  ddl m} | j\}}z||\}}	W n ttfk
rD   |  Y S X |	jr,|jr,t||	 }
t	||}d|d  t
|d  | ||||}g g  }}||| |}|d |||| }|tjkr|S t|d |  }|tjkrt||  t|d  d }|| td|D ]R}|| | }|tjkrJ||| 9 }n||| 9 }t||  }|| q || d|  dt|  }|t|d tj  }|| td|
d d D ]T}|||||   9 }t||  }|t|| d t|d   }|| q|t|  t|  S tt| ||||S )Nr   r   r   r4   r<   )r   r   r.   r   r   r}   rY   rL   r   rO   r   r   r   r   rh   r
   r   r   r   r&   r   r   r   r   r   r   r1   r2   r     sH    


(



 zbesselk._eval_nseries)Nr   )r   )ra   rb   rc   rd   r   rg   r@   r>   rf   r;   rv   r   rx   r   r   r   r   r   r1   r1   r   r2   r   N  s   %
r   c                   @   s$   e Zd ZdZejZejZdd ZdS )hankel1a  
    Hankel function of the first kind.

    Explanation
    ===========

    This function is defined as

    .. math ::
        H_\nu^{(1)} = J_\nu(z) + iY_\nu(z),

    where $J_\nu(z)$ is the Bessel function of the first kind, and
    $Y_\nu(z)$ is the Bessel function of the second kind.

    It is a solution to Bessel's equation.

    Examples
    ========

    >>> from sympy import hankel1
    >>> from sympy.abc import z, n
    >>> hankel1(n, z).diff(z)
    hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2

    See Also
    ========

    hankel2, besselj, bessely

    References
    ==========

    .. [1] https://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/

    c                 C   s(   | j }|jdkr$t| j | S d S rD   )r5   rE   hankel2r3   rF   rG   r1   r1   r2   rH     s    
zhankel1._eval_conjugateN	ra   rb   rc   rd   r   rg   r@   r>   rH   r1   r1   r1   r2   r     s   $r   c                   @   s$   e Zd ZdZejZejZdd ZdS )r   a  
    Hankel function of the second kind.

    Explanation
    ===========

    This function is defined as

    .. math ::
        H_\nu^{(2)} = J_\nu(z) - iY_\nu(z),

    where $J_\nu(z)$ is the Bessel function of the first kind, and
    $Y_\nu(z)$ is the Bessel function of the second kind.

    It is a solution to Bessel's equation, and linearly independent from
    $H_\nu^{(1)}$.

    Examples
    ========

    >>> from sympy import hankel2
    >>> from sympy.abc import z, n
    >>> hankel2(n, z).diff(z)
    hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2

    See Also
    ========

    hankel1, besselj, bessely

    References
    ==========

    .. [1] https://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/

    c                 C   s(   | j }|jdkr$t| j | S d S rD   )r5   rE   r   r3   rF   rG   r1   r1   r2   rH   =  s    
zhankel2._eval_conjugateNr   r1   r1   r1   r2   r     s   %r   c                    s   t   fdd}|S )Nc                    s   |j r | ||S d S r6   )rL   r   fnr1   r2   gD  s    zassume_integer_order.<locals>.gr   )r   r   r1   r   r2   assume_integer_orderC  s    r   c                   @   s*   e Zd ZdZdd Zdd Zd
ddZd	S )SphericalBesselBasea-  
    Base class for spherical Bessel functions.

    These are thin wrappers around ordinary Bessel functions,
    since spherical Bessel functions differ from the ordinary
    ones just by a slight change in order.

    To use this class, define the ``_eval_evalf()`` and ``_expand()`` methods.

    c                 K   s   t ddS )z@ Expand self into a polynomial. Nu is guaranteed to be Integer. Z	expansionNr}   r0   r\   r1   r1   r2   _expandW  s    zSphericalBesselBase._expandc                 K   s   | j jr| jf |S | S r6   )r3   
is_Integerr   r   r1   r1   r2   rZ   [  s    z%SphericalBesselBase._eval_expand_funcr<   c                 C   s:   |dkrt | || | jd | j| | jd  | j  S r=   )r	   r?   r3   r5   rA   r1   r1   r2   rC   `  s
    
zSphericalBesselBase.fdiffN)r<   )ra   rb   rc   rd   r   rZ   rC   r1   r1   r1   r2   r   K  s   r   c                 C   s8   t | |t| tj| d  t |  d | t|  S Nr4   )r)   r   r   ro   r   rs   r:   r1   r1   r2   _jng  s    $r   c                 C   s8   t j| d  t|  d | t| t| |t|  S r   )r   ro   r)   r   r   r   r1   r1   r2   _ynl  s    $r   c                   @   sD   e Zd ZdZedd Zdd Zdd Zdd	 Zd
d Z	dd Z
dS )rR   a  
    Spherical Bessel function of the first kind.

    Explanation
    ===========

    This function is a solution to the spherical Bessel equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
          + 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0.

    It can be defined as

    .. math ::
        j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),

    where $J_\nu(z)$ is the Bessel function of the first kind.

    The spherical Bessel functions of integral order are
    calculated using the formula:

    .. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z},

    where the coefficients $f_n(z)$ are available as
    :func:`sympy.polys.orthopolys.spherical_bessel_fn`.

    Examples
    ========

    >>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(jn(0, z)))
    sin(z)/z
    >>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z
    True
    >>> expand_func(jn(3, z))
    (-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z)
    >>> jn(nu, z).rewrite(besselj)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2
    >>> jn(nu, z).rewrite(bessely)
    (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2
    >>> jn(2, 5.2+0.3j).evalf(20)
    0.099419756723640344491 - 0.054525080242173562897*I

    See Also
    ========

    besselj, bessely, besselk, yn

    References
    ==========

    .. [1] https://dlmf.nist.gov/10.47

    c                 C   sD   |j r*|j rtjS |jr*|jr$tjS tjS |tjtjfkr@tjS d S r6   )	rT   r   rg   rL   rY   rh   ri   rm   rl   r7   r1   r1   r2   r;     s    zjn.evalc                 K   s    t td|  t|tj | S rt   )r   r   rN   r   ry   ru   r1   r1   r2   r     s    zjn._eval_rewrite_as_besseljc                 K   s,   t j| ttd|   t| t j | S rt   )r   ro   r   r   rw   ry   ru   r1   r1   r2   rx     s    zjn._eval_rewrite_as_besselyc                 K   s   t j| t| d | S r   )r   ro   rS   ru   r1   r1   r2   r     s    zjn._eval_rewrite_as_ync                 K   s   t | j| jS r6   )r   r3   r5   r   r1   r1   r2   r     s    z
jn._expandc                 C   s   | j jr| t|S d S r6   r3   r   r   rN   _eval_evalfr0   precr1   r1   r2   r     s    zjn._eval_evalfN)ra   rb   rc   rd   rf   r;   r   rx   r   r   r   r1   r1   r1   r2   rR   r  s   9
rR   c                   @   s@   e Zd ZdZedd Zedd Zdd Zdd	 Zd
d Z	dS )rS   a  
    Spherical Bessel function of the second kind.

    Explanation
    ===========

    This function is another solution to the spherical Bessel equation, and
    linearly independent from $j_n$. It can be defined as

    .. math ::
        y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),

    where $Y_\nu(z)$ is the Bessel function of the second kind.

    For integral orders $n$, $y_n$ is calculated using the formula:

    .. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(yn(0, z)))
    -cos(z)/z
    >>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z
    True
    >>> yn(nu, z).rewrite(besselj)
    (-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2
    >>> yn(nu, z).rewrite(bessely)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2
    >>> yn(2, 5.2+0.3j).evalf(20)
    0.18525034196069722536 + 0.014895573969924817587*I

    See Also
    ========

    besselj, bessely, besselk, jn

    References
    ==========

    .. [1] https://dlmf.nist.gov/10.47

    c                 K   s0   t j|d  ttd|   t| t j | S rX   )r   ro   r   r   rN   ry   ru   r1   r1   r2   r     s    zyn._eval_rewrite_as_besseljc                 K   s    t td|  t|tj | S rt   )r   r   rw   r   ry   ru   r1   r1   r2   rx     s    zyn._eval_rewrite_as_besselyc                 K   s   t j|d  t| d | S r   )r   ro   rR   ru   r1   r1   r2   rz     s    zyn._eval_rewrite_as_jnc                 K   s   t | j| jS r6   )r   r3   r5   r   r1   r1   r2   r     s    z
yn._expandc                 C   s   | j jr| t|S d S r6   )r3   r   r   rw   r   r   r1   r1   r2   r     s    zyn._eval_evalfN)
ra   rb   rc   rd   r   r   rx   rz   r   r   r1   r1   r1   r2   rS     s   .

rS   c                   @   sL   e Zd Zedd Zedd Zdd Zdd Zd	d
 Zdd Z	dd Z
dS )SphericalHankelBasec                 K   sN   | j }ttd|  t|tj ||t tj|d   t| tj |   S r=   )_hankel_kind_signr   r   rN   r   ry   r   ro   r0   r9   r:   r_   hksr1   r1   r2   r     s    &z,SphericalHankelBase._eval_rewrite_as_besseljc                 K   sJ   | j }ttd|  tj| t| tj | |t t|tj |   S rt   )r   r   r   r   ro   rw   ry   r   r   r1   r1   r2   rx     s    (z,SphericalHankelBase._eval_rewrite_as_besselyc                 K   s(   | j }t||t|t t||  S r6   )r   rR   r   rS   r   r   r1   r1   r2   r      s    z'SphericalHankelBase._eval_rewrite_as_ync                 K   s(   | j }t|||t t||t  S r6   )r   rR   r   rS   r   r   r1   r1   r2   rz   $  s    z'SphericalHankelBase._eval_rewrite_as_jnc                 K   sF   | j jr| jf |S | j }| j}| j}t|||t t||  S d S r6   )r3   r   r   r5   r   rR   r   rS   )r0   r\   r9   r:   r   r1   r1   r2   rZ   (  s    z%SphericalHankelBase._eval_expand_funcc                 K   s2   | j }| j}| j}t|||t t||   S r6   )r3   r5   r   r   r   r   expand)r0   r\   rs   r:   r   r1   r1   r2   r   1  s    
zSphericalHankelBase._expandc                 C   s   | j jr| t|S d S r6   r   r   r1   r1   r2   r   @  s    zSphericalHankelBase._eval_evalfN)ra   rb   rc   r   r   rx   r   rz   rZ   r   r   r1   r1   r1   r2   r     s   

	r   c                   @   s"   e Zd ZdZejZedd ZdS )rP   a  
    Spherical Hankel function of the first kind.

    Explanation
    ===========

    This function is defined as

    .. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z),

    where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
    Bessel function of the first and second kinds.

    For integral orders $n$, $h_n^(1)$ is calculated using the formula:

    .. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(hn1(nu, z)))
    jn(nu, z) + I*yn(nu, z)
    >>> print(expand_func(hn1(0, z)))
    sin(z)/z - I*cos(z)/z
    >>> print(expand_func(hn1(1, z)))
    -I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2
    >>> hn1(nu, z).rewrite(jn)
    (-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
    >>> hn1(nu, z).rewrite(yn)
    (-1)**nu*yn(-nu - 1, z) + I*yn(nu, z)
    >>> hn1(nu, z).rewrite(hankel1)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2

    See Also
    ========

    hn2, jn, yn, hankel1, hankel2

    References
    ==========

    .. [1] https://dlmf.nist.gov/10.47

    c                 K   s   t td|  t|| S rt   )r   r   r   ru   r1   r1   r2   _eval_rewrite_as_hankel1x  s    zhn1._eval_rewrite_as_hankel1N)	ra   rb   rc   rd   r   rg   r   r   r   r1   r1   r1   r2   rP   E  s   0rP   c                   @   s$   e Zd ZdZej Zedd ZdS )rQ   a  
    Spherical Hankel function of the second kind.

    Explanation
    ===========

    This function is defined as

    .. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z),

    where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
    Bessel function of the first and second kinds.

    For integral orders $n$, $h_n^(2)$ is calculated using the formula:

    .. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(hn2(nu, z)))
    jn(nu, z) - I*yn(nu, z)
    >>> print(expand_func(hn2(0, z)))
    sin(z)/z + I*cos(z)/z
    >>> print(expand_func(hn2(1, z)))
    I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2
    >>> hn2(nu, z).rewrite(hankel2)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2
    >>> hn2(nu, z).rewrite(jn)
    -(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
    >>> hn2(nu, z).rewrite(yn)
    (-1)**nu*yn(-nu - 1, z) - I*yn(nu, z)

    See Also
    ========

    hn1, jn, yn, hankel1, hankel2

    References
    ==========

    .. [1] https://dlmf.nist.gov/10.47

    c                 K   s   t td|  t|| S rt   )r   r   r   ru   r1   r1   r2   _eval_rewrite_as_hankel2  s    zhn2._eval_rewrite_as_hankel2N)	ra   rb   rc   rd   r   rg   r   r   r   r1   r1   r1   r2   rQ   }  s   0rQ   sympy   c                    s  ddl m} dkrTddlm  ddlm} || fddtd|d D S d	krdd
lm zddl	m
 fdd}W q tk
r   ddl	m fdd}Y qX ntdfdd}| }|||}|g}	t|d D ]}
|||| }|	| q|	S )a  
    Zeros of the spherical Bessel function of the first kind.

    Explanation
    ===========

    This returns an array of zeros of $jn$ up to the $k$-th zero.

    * method = "sympy": uses `mpmath.besseljzero
      <https://mpmath.org/doc/current/functions/bessel.html#mpmath.besseljzero>`_
    * method = "scipy": uses the
      `SciPy's sph_jn <https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_
      and
      `newton <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_
      to find all
      roots, which is faster than computing the zeros using a general
      numerical solver, but it requires SciPy and only works with low
      precision floating point numbers. (The function used with
      method="sympy" is a recent addition to mpmath; before that a general
      solver was used.)

    Examples
    ========

    >>> from sympy import jn_zeros
    >>> jn_zeros(2, 4, dps=5)
    [5.7635, 9.095, 12.323, 15.515]

    See Also
    ========

    jn, yn, besselj, besselk, bessely

    Parameters
    ==========

    n : integer
        order of Bessel function

    k : integer
        number of zeros to return


    r   )r   r   )besseljzero)dps_to_precc                    s0   g | ](}t  td  t|qS )g      ?)r   _from_mpmathr   
_to_mpmathint).0l)r   rs   r   r1   r2   
<listcomp>  s   zjn_zeros.<locals>.<listcomp>r4   scipy)newton)spherical_jnc                    s
    | S r6   r1   rV   )rs   r   r1   r2   <lambda>      zjn_zeros.<locals>.<lambda>)sph_jnc                    s    | d d S )Nr   r   r1   r   )rs   r   r1   r2   r     r   Unknown method.c                    s     dkr| |}nt d|S )Nr   r   r   )r]   rV   r   )methodr   r1   r2   solver  s    zjn_zeros.<locals>.solver)mathr   mpmathr   Zmpmath.libmp.libmpfr   r   Zscipy.optimizer   Zscipy.specialr   ImportErrorr   r}   r   )rs   r   r   ZdpsZmath_pir   r]   r   r   rootsir1   )r   r   rs   r   r   r   r   r2   jn_zeros  s2    -
r   c                   @   s4   e Zd ZdZdd Zdd ZdddZdd	d
ZdS )AiryBasezg
    Abstract base class for Airy functions.

    This class is meant to reduce code duplication.

    c                 C   s   |  | jd  S Nr   )funcr.   rF   r/   r1   r1   r2   rH     s    zAiryBase._eval_conjugatec                 C   s   | j d jS r   )r.   r   r/   r1   r1   r2   r     s    zAiryBase._eval_is_extended_realTc                 K   sL   | j d }| }| j}|||| d }t||||  d }||fS )Nr   r<   )r.   rF   r   r   )r0   deepr\   r:   Zzcr]   uvr1   r1   r2   as_real_imag  s    
zAiryBase.as_real_imagc                 K   s$   | j f d|i|\}}||t  S )Nr   )r   r   )r0   r   r\   Zre_partZim_partr1   r1   r2   _eval_expand_complex  s    zAiryBase._eval_expand_complexN)T)T)ra   rb   rc   rd   rH   r   r   r   r1   r1   r1   r2   r   	  s
   
r   c                   @   s^   e Zd ZdZdZdZedd ZdddZe	e
dd	 Zd
d Zdd Zdd Zdd ZdS )airyaia  
    The Airy function $\operatorname{Ai}$ of the first kind.

    Explanation
    ===========

    The Airy function $\operatorname{Ai}(z)$ is defined to be the function
    satisfying Airy's differential equation

    .. math::
        \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.

    Equivalently, for real $z$

    .. math::
        \operatorname{Ai}(z) := \frac{1}{\pi}
        \int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airyai
    >>> from sympy.abc import z

    >>> airyai(z)
    airyai(z)

    Several special values are known:

    >>> airyai(0)
    3**(1/3)/(3*gamma(2/3))
    >>> from sympy import oo
    >>> airyai(oo)
    0
    >>> airyai(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airyai(z))
    airyai(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airyai(z), z)
    airyaiprime(z)
    >>> diff(airyai(z), z, 2)
    z*airyai(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airyai(z), z, 0, 3)
    3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airyai(-2).evalf(50)
    0.22740742820168557599192443603787379946077222541710

    Rewrite $\operatorname{Ai}(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airyai(z).rewrite(hyper)
    -3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))

    See Also
    ========

    airybi: Airy function of the second kind.
    airyaiprime: Derivative of the Airy function of the first kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] https://dlmf.nist.gov/9
    .. [3] https://encyclopediaofmath.org/wiki/Airy_functions
    .. [4] https://mathworld.wolfram.com/AiryFunctions.html

    r4   Tc                 C   s   |j r^|tjkrtjS |tjkr&tjS |tjkr6tjS |jr^tjdtdd t	tdd  S |jrtjdtdd t	tdd  S d S )Nr   r<   )
	is_Numberr   rk   rl   rh   rm   rT   rg   r   r%   r8   r   r1   r1   r2   r;     s    


"zairyai.evalc                 C   s$   |dkrt | jd S t| |d S Nr4   r   )airyaiprimer.   r	   rA   r1   r1   r2   rC     s    zairyai.fdiffc                 G   s:  | dk rt jS t|}t|dkr|d }td| |   td| | d   tt| tdd tdd   t|  t	| d tdd  tt| tdd tdd  t| d  t	| d tdd   | S t j
dtdd t  t	| t j
 t d  ttddt | t j
   t|  td| |   S d S )Nr   r4   r   r   r<   r{   )r   rh   r   lenr   r   r   r   r   r%   rg   rs   rV   Zprevious_termsr   r1   r1   r2   taylor_term  s"    L@Hzairyai.taylor_termc                 K   s`   t dd}t dd}t| t dd}t|jr\|t|  t| || t|||   S d S Nr4   r   r<   r   r   r!   r[   r   rN   r0   r:   r_   otttrW   r1   r1   r2   r     s
    


zairyai._eval_rewrite_as_besseljc                 K   s   t dd}t dd}t|t dd}t|jrX|t| t| || t|||   S |t||t| ||  |t||  t|||    S d S r   r   r   r!   rY   r   rO   r   r1   r1   r2   rv     s    


*zairyai._eval_rewrite_as_besselic                 K   s~   t jdtdd ttdd  }|tddttdd  }|tg tddg|d d  |tg tddg|d d   S )Nr   r<   r4   	   r{   )r   rg   r   r%   r   r(   r0   r:   r_   Zpf1Zpf2r1   r1   r2   _eval_rewrite_as_hyper  s    "zairyai._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d k	r|	| }d| jr|	| }|	| }|	| }|||  | || |||    }
|||  |||   }tj|
tj	 t
| |
tj	 td t|   S d S 	Nr   r4   r   )excludedmrs   r   )r.   free_symbolsr   popr   matchrL   r   ry   rg   r   r   airybir0   r\   r   Zsymbsr:   r   r  r  rs   MpfZnewargr1   r1   r2   rZ     s$    

$zairyai._eval_expand_funcN)r4   ra   rb   rc   rd   nargs
unbranchedrf   r;   rC   staticmethodr   r   r   rv   r  rZ   r1   r1   r1   r2   r   $  s   X

	r   c                   @   s^   e Zd ZdZdZdZedd ZdddZe	e
dd	 Zd
d Zdd Zdd Zdd ZdS )r  a  
    The Airy function $\operatorname{Bi}$ of the second kind.

    Explanation
    ===========

    The Airy function $\operatorname{Bi}(z)$ is defined to be the function
    satisfying Airy's differential equation

    .. math::
        \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.

    Equivalently, for real $z$

    .. math::
        \operatorname{Bi}(z) := \frac{1}{\pi}
                 \int_0^\infty
                   \exp\left(-\frac{t^3}{3} + z t\right)
                   + \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airybi
    >>> from sympy.abc import z

    >>> airybi(z)
    airybi(z)

    Several special values are known:

    >>> airybi(0)
    3**(5/6)/(3*gamma(2/3))
    >>> from sympy import oo
    >>> airybi(oo)
    oo
    >>> airybi(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airybi(z))
    airybi(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airybi(z), z)
    airybiprime(z)
    >>> diff(airybi(z), z, 2)
    z*airybi(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airybi(z), z, 0, 3)
    3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airybi(-2).evalf(50)
    -0.41230258795639848808323405461146104203453483447240

    Rewrite $\operatorname{Bi}(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airybi(z).rewrite(hyper)
    3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))

    See Also
    ========

    airyai: Airy function of the first kind.
    airyaiprime: Derivative of the Airy function of the first kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] https://dlmf.nist.gov/9
    .. [3] https://encyclopediaofmath.org/wiki/Airy_functions
    .. [4] https://mathworld.wolfram.com/AiryFunctions.html

    r4   Tc                 C   s   |j r^|tjkrtjS |tjkr&tjS |tjkr6tjS |jr^tjdtdd t	tdd  S |jrtjdtdd t	tdd  S d S )Nr   r4      r<   )
r   r   rk   rl   rm   rh   rT   rg   r   r%   r   r1   r1   r2   r;   .  s    


"zairybi.evalc                 C   s$   |dkrt | jd S t| |d S r   )airybiprimer.   r	   rA   r1   r1   r2   rC   =  s    zairybi.fdiffc                 G   s  | dk rt jS t|}t|dkr|d }td| tttddt | t j	   t
| t j	 t d  | t j	 tttddt | t j   t
| d t d   | S t j	tddt  t| t j	 t d  tttddt | t j	   t
|  td| |   S d S )Nr   r4   r   r   r<   r  )r   rh   r   r   r   r    r   r   r   rg   r   r   ry   r   r%   r   r1   r1   r2   r   C  s    @<Hzairybi.taylor_termc                 K   s`   t dd}t dd}t| t dd}t|jr\t| d t| || t|||   S d S r   r   r   r1   r1   r2   r   R  s
    


zairybi._eval_rewrite_as_besseljc                 K   s   t dd}t dd}t|t dd}t|jr\t|td t| || t|||   S t||}t|| }t||t| ||  || t|||    S d S r   r   r0   r:   r_   r   r   rW   r   r   r1   r1   r2   rv   Y  s    


.
zairybi._eval_rewrite_as_besselic                 K   sz   t jtddttdd  }|tdd ttdd }|tg tddg|d d  |tg tddg|d d   S )Nr   r  r<   r4   r  r{   )r   rg   r   r%   r   r(   r  r1   r1   r2   r  d  s    zairybi._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d k	r|	| }d| jr|	| }|	| }|	| }|||  | || |||    }
|||  |||   }tjt	dtj
|
  t| tj
|
 t|   S d S r  )r.   r  r   r	  r   r
  rL   r   ry   r   rg   r   r  r  r1   r1   r2   rZ   i  s$    

$zairybi._eval_expand_funcN)r4   r  r1   r1   r1   r2   r    s   Z

r  c                   @   sV   e Zd ZdZdZdZedd ZdddZdd	 Z	d
d Z
dd Zdd Zdd ZdS )r   a%  
    The derivative $\operatorname{Ai}^\prime$ of the Airy function of the first
    kind.

    Explanation
    ===========

    The Airy function $\operatorname{Ai}^\prime(z)$ is defined to be the
    function

    .. math::
        \operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airyaiprime
    >>> from sympy.abc import z

    >>> airyaiprime(z)
    airyaiprime(z)

    Several special values are known:

    >>> airyaiprime(0)
    -3**(2/3)/(3*gamma(1/3))
    >>> from sympy import oo
    >>> airyaiprime(oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airyaiprime(z))
    airyaiprime(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airyaiprime(z), z)
    z*airyai(z)
    >>> diff(airyaiprime(z), z, 2)
    z*airyaiprime(z) + airyai(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airyaiprime(z), z, 0, 3)
    -3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airyaiprime(-2).evalf(50)
    0.61825902074169104140626429133247528291577794512415

    Rewrite $\operatorname{Ai}^\prime(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airyaiprime(z).rewrite(hyper)
    3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3))

    See Also
    ========

    airyai: Airy function of the first kind.
    airybi: Airy function of the second kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] https://dlmf.nist.gov/9
    .. [3] https://encyclopediaofmath.org/wiki/Airy_functions
    .. [4] https://mathworld.wolfram.com/AiryFunctions.html

    r4   Tc                 C   sR   |j r&|tjkrtjS |tjkr&tjS |jrNtjdtdd ttdd  S d S )Nr   r4   )	r   r   rk   rl   rh   rT   ro   r   r%   r   r1   r1   r2   r;     s    

zairyaiprime.evalc                 C   s.   |dkr | j d t| j d  S t| |d S r   )r.   r   r	   rA   r1   r1   r2   rC     s    zairyaiprime.fdiffc              	   C   s>   | j d |}t| tj|dd}W 5 Q R X t||S Nr   r4   )Z
derivative)r.   r   r+   r*   r   r   r   r0   r   r:   resr1   r1   r2   r     s    
zairyaiprime._eval_evalfc                 K   sP   t dd}t| t dd}t|jrL|d t| || t|||   S d S Nr<   r   )r   r   r!   r[   rN   r0   r:   r_   r   rW   r1   r1   r2   r     s    

z$airyaiprime._eval_rewrite_as_besseljc                 K   s   t dd}t dd}|t|t dd }t|jrP|d t||t| |  S t|t dd}t||}t|| }||d | t|||  |t| ||    S d S r   )r   r   r!   rY   rO   r  r1   r1   r2   rv     s    



z$airyaiprime._eval_rewrite_as_besselic                 K   s   |d ddt dd  tt dd  }dtddtt dd  }|tg t ddg|d d  |tg t ddg|d d   S )Nr<   r   r4      r  )r   r%   r   r(   r  r1   r1   r2   r    s    (z"airyaiprime._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d k	r|	| }d| jr|	| }|	| }|	| }|| |||   |||  |  }
|||  |||   }tj|
tj	 t
| |
tj	 td t|   S d S r  )r.   r  r   r	  r   r
  rL   r   ry   rg   r   r   r  r  r1   r1   r2   rZ     s$    

$zairyaiprime._eval_expand_funcN)r4   ra   rb   rc   rd   r  r  rf   r;   rC   r   r   rv   r  rZ   r1   r1   r1   r2   r     s   Q


r   c                   @   sV   e Zd ZdZdZdZedd ZdddZdd	 Z	d
d Z
dd Zdd Zdd ZdS )r  a6  
    The derivative $\operatorname{Bi}^\prime$ of the Airy function of the first
    kind.

    Explanation
    ===========

    The Airy function $\operatorname{Bi}^\prime(z)$ is defined to be the
    function

    .. math::
        \operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airybiprime
    >>> from sympy.abc import z

    >>> airybiprime(z)
    airybiprime(z)

    Several special values are known:

    >>> airybiprime(0)
    3**(1/6)/gamma(1/3)
    >>> from sympy import oo
    >>> airybiprime(oo)
    oo
    >>> airybiprime(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airybiprime(z))
    airybiprime(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airybiprime(z), z)
    z*airybi(z)
    >>> diff(airybiprime(z), z, 2)
    z*airybiprime(z) + airybi(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airybiprime(z), z, 0, 3)
    3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airybiprime(-2).evalf(50)
    0.27879516692116952268509756941098324140300059345163

    Rewrite $\operatorname{Bi}^\prime(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airybiprime(z).rewrite(hyper)
    3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)

    See Also
    ========

    airyai: Airy function of the first kind.
    airybi: Airy function of the second kind.
    airyaiprime: Derivative of the Airy function of the first kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] https://dlmf.nist.gov/9
    .. [3] https://encyclopediaofmath.org/wiki/Airy_functions
    .. [4] https://mathworld.wolfram.com/AiryFunctions.html

    r4   Tc                 C   s~   |j rX|tjkrtjS |tjkr&tjS |tjkr6tjS |jrXdtdd ttdd S |jrzdtdd ttdd S d S )Nr   r4   r  )	r   r   rk   rl   rm   rh   rT   r   r%   r   r1   r1   r2   r;   u  s    


zairybiprime.evalc                 C   s.   |dkr | j d t| j d  S t| |d S r   )r.   r  r	   rA   r1   r1   r2   rC     s    zairybiprime.fdiffc              	   C   s>   | j d |}t| tj|dd}W 5 Q R X t||S r  )r.   r   r+   r*   r  r   r   r  r1   r1   r2   r     s    
zairybiprime._eval_evalfc                 K   sR   t dd}|t| t dd }t|jrN| td t| |t||  S d S r  r   r  r1   r1   r2   r     s    

z$airybiprime._eval_rewrite_as_besseljc                 K   s   t dd}t dd}|t|t dd }t|jrT|td t| |t||  S t|t dd}t||}t|| }t||t| ||  |d | t|||    S d S r   r   r  r1   r1   r2   rv     s    


"
z$airybiprime._eval_rewrite_as_besselic                 K   s|   |d dt dd ttdd  }t ddttdd }|tg tddg|d d  |tg tddg|d d   S )Nr<   r   r  r4   r  r  )r   r%   r   r(   r  r1   r1   r2   r    s    $z"airybiprime._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d k	r|	| }d| jr|	| }|	| }|	| }|| |||   |||  |  }
|||  |||   }tjt	d|
tj
  t| |
tj
 t|   S d S r  )r.   r  r   r	  r   r
  rL   r   ry   r   rg   r   r  r  r1   r1   r2   rZ     s$    

$zairybiprime._eval_expand_funcN)r4   r  r1   r1   r1   r2   r    s   S

r  c                   @   sF   e Zd ZdZedd ZdddZdd Zd	d
 Zdd Z	dd Z
dS )marcumqa  
    The Marcum Q-function.

    Explanation
    ===========

    The Marcum Q-function is defined by the meromorphic continuation of

    .. math::
        Q_m(a, b) = a^{- m + 1} \int_{b}^{\infty} x^{m} e^{- \frac{a^{2}}{2} - \frac{x^{2}}{2}} I_{m - 1}\left(a x\right)\, dx

    Examples
    ========

    >>> from sympy import marcumq
    >>> from sympy.abc import m, a, b
    >>> marcumq(m, a, b)
    marcumq(m, a, b)

    Special values:

    >>> marcumq(m, 0, b)
    uppergamma(m, b**2/2)/gamma(m)
    >>> marcumq(0, 0, 0)
    0
    >>> marcumq(0, a, 0)
    1 - exp(-a**2/2)
    >>> marcumq(1, a, a)
    1/2 + exp(-a**2)*besseli(0, a**2)/2
    >>> marcumq(2, a, a)
    1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)

    Differentiation with respect to $a$ and $b$ is supported:

    >>> from sympy import diff
    >>> diff(marcumq(m, a, b), a)
    a*(-marcumq(m, a, b) + marcumq(m + 1, a, b))
    >>> diff(marcumq(m, a, b), b)
    -a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Marcum_Q-function
    .. [2] https://mathworld.wolfram.com/MarcumQ-Function.html

    c                 C   sZ  |t jkr@|t jkr$|t jkr$t jS t||d t j t| S |t jkrn|t jkrnddt|d t j   S ||kr|t jkrdt|d  td|d   t j S |dkrt jt jt|d   td|d   t|d  td|d   S |jr,|jr|jrt jS t||d t j t| S |jrV|jrVddt|d t j   S d S r   )	r   rh   r'   ry   r%   r   rg   rO   rT   )r8   r  rW   r   r1   r1   r2   r;     s"    

&Dzmarcumq.evalr<   c                 C   s   | j \}}}|dkr6|t||| td| ||  S |dkr||  ||d   t|d |d   d  t|d ||  S t| |d S )Nr<   r4   r   )r.   r  r   rO   r	   )r0   rB   r  rW   r   r1   r1   r2   rC     s    "Bzmarcumq.fdiffc                 K   sp   ddl m} |dttdj}|d|  ||| t|d |d   d  t|d ||  ||tj	g S )Nr   )IntegralrV   r4   r<   )
Zsympy.integrals.integralsr  getr   r   namer   rO   r   rl   )r0   r  rW   r   r_   r  rV   r1   r1   r2   _eval_rewrite_as_Integral  s
    
@z!marcumq._eval_rewrite_as_Integralc                 K   sb   ddl m} |dtd}t|d |d   d ||| | t|||  |d| tjg S )Nr   )Sumr   r<   r4   )Zsympy.concrete.summationsr"  r  r   r   rO   r   rl   )r0   r  rW   r   r_   r"  r   r1   r1   r2   _eval_rewrite_as_Sum  s    zmarcumq._eval_rewrite_as_Sumc                    s    |kr|dkr4dt  d  td d   d S |jr|dkrt fddtd|D }tjt  d  td d  d  t  d  |  S d S )Nr4   r<   r   c                 3   s   | ]}t | d  V  qdS )r<   N)rO   )r   r   rW   r1   r2   	<genexpr>$  s     z3marcumq._eval_rewrite_as_besseli.<locals>.<genexpr>)r   rO   r   sumr   r   ry   )r0   r  rW   r   r_   r   r1   r$  r2   rv     s    $z marcumq._eval_rewrite_as_besselic                 C   s   t dd | jD rdS d S )Nc                 s   s   | ]}|j V  qd S r6   )rT   )r   r   r1   r1   r2   r%  (  s     z(marcumq._eval_is_zero.<locals>.<genexpr>T)allr.   r/   r1   r1   r2   _eval_is_zero'  s    zmarcumq._eval_is_zeroN)r<   )ra   rb   rc   rd   rf   r;   rC   r!  r#  rv   r(  r1   r1   r1   r2   r    s   0

	r  N)r   r   )U	functoolsr   Z
sympy.corer   Zsympy.core.addr   Zsympy.core.cacher   Zsympy.core.exprr   Zsympy.core.functionr   r	   r
   Zsympy.core.logicr   r   Zsympy.core.numbersr   r   r   Zsympy.core.powerr   Zsympy.core.symbolr   r   r   Zsympy.core.sympifyr   Z(sympy.functions.combinatorial.factorialsr   Z(sympy.functions.elementary.trigonometricr   r   r   r   Z#sympy.functions.elementary.integersr   Z&sympy.functions.elementary.exponentialr   r   Z(sympy.functions.elementary.miscellaneousr   r   r   Z$sympy.functions.elementary.complexesr    r!   r"   r#   r$   Z'sympy.functions.special.gamma_functionsr%   r&   r'   Zsympy.functions.special.hyperr(   Zsympy.polys.orthopolysr)   r   r*   r+   r,   rN   rw   rO   r   r   r   r   r   r   r   rR   rS   r   rP   rQ   r   r   r   r  r   r  r  r1   r1   r1   r2   <module>   sf   F 1   ./XB988
T - 2  %