U
    L?h/                     @   s  d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZ dd	lmZ dddZejd
fddZejd
fddZ ejd
fddZ!ejd
fddZ"ejd
fddZ#ejd
fddZ$d
S )af  
Singularities
=============

This module implements algorithms for finding singularities for a function
and identifying types of functions.

The differential calculus methods in this module include methods to identify
the following function types in the given ``Interval``:
- Increasing
- Strictly Increasing
- Decreasing
- Strictly Decreasing
- Monotonic

    )Pow)S)Symbol)sympify)log)seccsccottancos)	sechcschcothtanhcoshasechacschatanhacoth)
filldedentNc                 C   s(  ddl m} |dkr&|jr tjntj}ztj}| tt	t
tgt}|ttttgt}|tD ]*}|jjrpt|jjr`|||j||7 }q`| tttD ]}|||jd ||7 }q| ttD ]8}|||jd d ||7 }|||jd d ||7 }q|W S  tk
r"   ttdY nX dS )a  
    Find singularities of a given function.

    Parameters
    ==========

    expression : Expr
        The target function in which singularities need to be found.
    symbol : Symbol
        The symbol over the values of which the singularity in
        expression in being searched for.

    Returns
    =======

    Set
        A set of values for ``symbol`` for which ``expression`` has a
        singularity. An ``EmptySet`` is returned if ``expression`` has no
        singularities for any given value of ``Symbol``.

    Raises
    ======

    NotImplementedError
        Methods for determining the singularities of this function have
        not been developed.

    Notes
    =====

    This function does not find non-isolated singularities
    nor does it find branch points of the expression.

    Currently supported functions are:
        - univariate continuous (real or complex) functions

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Mathematical_singularity

    Examples
    ========

    >>> from sympy import singularities, Symbol, log
    >>> x = Symbol('x', real=True)
    >>> y = Symbol('y', real=False)
    >>> singularities(x**2 + x + 1, x)
    EmptySet
    >>> singularities(1/(x + 1), x)
    {-1}
    >>> singularities(1/(y**2 + 1), y)
    {-I, I}
    >>> singularities(1/(y**3 + 1), y)
    {-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2}
    >>> singularities(log(x), x)
    {0}

    r   solvesetN   zl
            Methods for determining the singularities
            of this function have not been developed.) sympy.solvers.solvesetr   Zis_realr   RealsZ	ComplexesEmptySetZrewriter   r   r	   r
   r   r   r   r   r   r   Zatomsr   expis_infiniteNotImplementedErrorZis_negativebaser   r   r   argsr   r   r   )
expressionsymboldomainr   Zsingsei r&   N/var/www/html/venv/lib/python3.8/site-packages/sympy/calculus/singularities.pysingularities   s(    <r(   c           	      C   st   ddl m} t| } | j}|dkr6t|dkr6td|pL|rF| ntd}| |}||||t	j
}||S )a  
    Helper function for functions checking function monotonicity.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked
    predicate : function
        The property being tested for. The function takes in an integer
        and returns a boolean. The integer input is the derivative and
        the boolean result should be true if the property is being held,
        and false otherwise.
    interval : Set, optional
        The range of values in which we are testing, defaults to all reals.
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    It returns a boolean indicating whether the interval in which
    the function's derivative satisfies given predicate is a superset
    of the given interval.

    Returns
    =======

    Boolean
        True if ``predicate`` is true for all the derivatives when ``symbol``
        is varied in ``range``, False otherwise.

    r   r   Nr   zKThe function has not yet been implemented for all multivariate expressions.x)r   r   r   free_symbolslenr   popr   diffr   r   Z	is_subset)	r!   	predicateintervalr"   r   freevariableZ
derivativeZpredicate_intervalr&   r&   r'   monotonicity_helperx   s    
r2   c                 C   s   t | dd ||S )a  
    Return whether the function is increasing in the given interval.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked.
    interval : Set, optional
        The range of values in which we are testing (defaults to set of
        all real numbers).
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    Returns
    =======

    Boolean
        True if ``expression`` is increasing (either strictly increasing or
        constant) in the given ``interval``, False otherwise.

    Examples
    ========

    >>> from sympy import is_increasing
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_increasing(x**3 - 3*x**2 + 4*x, S.Reals)
    True
    >>> is_increasing(-x**2, Interval(-oo, 0))
    True
    >>> is_increasing(-x**2, Interval(0, oo))
    False
    >>> is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3))
    False
    >>> is_increasing(x**2 + y, Interval(1, 2), x)
    True

    c                 S   s   | dkS Nr   r&   r)   r&   r&   r'   <lambda>       zis_increasing.<locals>.<lambda>r2   r!   r/   r"   r&   r&   r'   is_increasing   s    (r9   c                 C   s   t | dd ||S )at  
    Return whether the function is strictly increasing in the given interval.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked.
    interval : Set, optional
        The range of values in which we are testing (defaults to set of
        all real numbers).
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    Returns
    =======

    Boolean
        True if ``expression`` is strictly increasing in the given ``interval``,
        False otherwise.

    Examples
    ========

    >>> from sympy import is_strictly_increasing
    >>> from sympy.abc import x, y
    >>> from sympy import Interval, oo
    >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
    True
    >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
    True
    >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
    False
    >>> is_strictly_increasing(-x**2, Interval(0, oo))
    False
    >>> is_strictly_increasing(-x**2 + y, Interval(-oo, 0), x)
    False

    c                 S   s   | dkS r3   r&   r4   r&   r&   r'   r5      r6   z(is_strictly_increasing.<locals>.<lambda>r7   r8   r&   r&   r'   is_strictly_increasing   s    (r:   c                 C   s   t | dd ||S )a  
    Return whether the function is decreasing in the given interval.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked.
    interval : Set, optional
        The range of values in which we are testing (defaults to set of
        all real numbers).
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    Returns
    =======

    Boolean
        True if ``expression`` is decreasing (either strictly decreasing or
        constant) in the given ``interval``, False otherwise.

    Examples
    ========

    >>> from sympy import is_decreasing
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_decreasing(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
    True
    >>> is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
    True
    >>> is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    True
    >>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
    False
    >>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
    False
    >>> is_decreasing(-x**2, Interval(-oo, 0))
    False
    >>> is_decreasing(-x**2 + y, Interval(-oo, 0), x)
    False

    c                 S   s   | dkS r3   r&   r4   r&   r&   r'   r5   +  r6   zis_decreasing.<locals>.<lambda>r7   r8   r&   r&   r'   is_decreasing   s    ,r;   c                 C   s   t | dd ||S )aZ  
    Return whether the function is strictly decreasing in the given interval.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked.
    interval : Set, optional
        The range of values in which we are testing (defaults to set of
        all real numbers).
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    Returns
    =======

    Boolean
        True if ``expression`` is strictly decreasing in the given ``interval``,
        False otherwise.

    Examples
    ========

    >>> from sympy import is_strictly_decreasing
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    True
    >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
    False
    >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
    False
    >>> is_strictly_decreasing(-x**2, Interval(-oo, 0))
    False
    >>> is_strictly_decreasing(-x**2 + y, Interval(-oo, 0), x)
    False

    c                 S   s   | dk S r3   r&   r4   r&   r&   r'   r5   V  r6   z(is_strictly_decreasing.<locals>.<lambda>r7   r8   r&   r&   r'   is_strictly_decreasing.  s    (r<   c                 C   sp   ddl m} t| } | j}|dkr6t|dkr6td|pL|rF| ntd}|| |||}|	|t
jkS )a  
    Return whether the function is monotonic in the given interval.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked.
    interval : Set, optional
        The range of values in which we are testing (defaults to set of
        all real numbers).
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    Returns
    =======

    Boolean
        True if ``expression`` is monotonic in the given ``interval``,
        False otherwise.

    Raises
    ======

    NotImplementedError
        Monotonicity check has not been implemented for the queried function.

    Examples
    ========

    >>> from sympy import is_monotonic
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_monotonic(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
    True
    >>> is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
    True
    >>> is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    True
    >>> is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
    True
    >>> is_monotonic(-x**2, S.Reals)
    False
    >>> is_monotonic(x**2 + y + 1, Interval(1, 2), x)
    True

    r   r   Nr   zKis_monotonic has not yet been implemented for all multivariate expressions.r)   )r   r   r   r*   r+   r   r,   r   r-   intersectionr   r   )r!   r/   r"   r   r0   r1   Zturning_pointsr&   r&   r'   is_monotonicY  s    0r>   )N)%__doc__Zsympy.core.powerr   Zsympy.core.singletonr   Zsympy.core.symbolr   Zsympy.core.sympifyr   Z&sympy.functions.elementary.exponentialr   Z(sympy.functions.elementary.trigonometricr   r   r	   r
   r   Z%sympy.functions.elementary.hyperbolicr   r   r   r   r   r   r   r   r   Zsympy.utilities.miscr   r(   r   r2   r9   r:   r;   r<   r>   r&   r&   r&   r'   <module>   s   ,
[1++/+