U
    ?h                     @   s    d dl Zdd ZefddZdS )    Nc           	         s,  t | } t| }t t | }t | }tt | }||krPtdf| S t j||| d|  dd}||k 	 rt
|D ]^}|| ||< tt ||d d }|| d|| d   ||d d< ||k r qq|d t}t |t}dd t||D  t fd	d
|D   S )a  Find `n_points` regularly spaced along `ar_shape`.

    The returned points (as slices) should be as close to cubically-spaced as
    possible. Essentially, the points are spaced by the Nth root of the input
    array size, where N is the number of dimensions. However, if an array
    dimension cannot fit a full step size, it is "discarded", and the
    computation is done for only the remaining dimensions.

    Parameters
    ----------
    ar_shape : array-like of ints
        The shape of the space embedding the grid. ``len(ar_shape)`` is the
        number of dimensions.
    n_points : int
        The (approximate) number of points to embed in the space.

    Returns
    -------
    slices : tuple of slice objects
        A slice along each dimension of `ar_shape`, such that the intersection
        of all the slices give the coordinates of regularly spaced points.

        .. versionchanged:: 0.14.1
            In scikit-image 0.14.1 and 0.15, the return type was changed from a
            list to a tuple to ensure `compatibility with Numpy 1.15`_ and
            higher. If your code requires the returned result to be a list, you
            may convert the output of this function to a list with:

            >>> result = list(regular_grid(ar_shape=(3, 20, 40), n_points=8))

            .. _compatibility with NumPy 1.15: https://github.com/numpy/numpy/blob/master/doc/release/1.15.0-notes.rst#deprecations

    Examples
    --------
    >>> ar = np.zeros((20, 40))
    >>> g = regular_grid(ar.shape, 8)
    >>> g
    (slice(5, None, 10), slice(5, None, 10))
    >>> ar[g] = 1
    >>> ar.sum()
    8.0
    >>> ar = np.zeros((20, 40))
    >>> g = regular_grid(ar.shape, 32)
    >>> g
    (slice(2, None, 5), slice(2, None, 5))
    >>> ar[g] = 1
    >>> ar.sum()
    32.0
    >>> ar = np.zeros((3, 20, 40))
    >>> g = regular_grid(ar.shape, 8)
    >>> g
    (slice(1, None, 3), slice(5, None, 10), slice(5, None, 10))
    >>> ar[g] = 1
    >>> ar.sum()
    8.0
    Ng      ?Zfloat64dtype      c                 S   s   g | ]\}}t |d |qS N)slice).0startstep r   L/var/www/html/venv/lib/python3.8/site-packages/skimage/util/_regular_grid.py
<listcomp>P   s   z regular_grid.<locals>.<listcomp>c                 3   s   | ]} | V  qd S r   r   )r   iZslicesr   r   	<genexpr>R   s     zregular_grid.<locals>.<genexpr>)npZ
asanyarraylenZargsortsortfloatprodr   fullanyrangeallZastypeintroundziptuple)	ar_shapen_pointsndimZunsort_dim_idxsZsorted_dimsZ
space_sizeZ	stepsizesdimZstartsr   r   r   regular_grid   s4    9

r"   c                 C   sB   t | |}tj| |d}dtt|| j|| j ||< |S )ae  Return an image with ~`n_points` regularly-spaced nonzero pixels.

    Parameters
    ----------
    ar_shape : tuple of int
        The shape of the desired output image.
    n_points : int
        The desired number of nonzero points.
    dtype : numpy data type, optional
        The desired data type of the output.

    Returns
    -------
    seed_img : array of int or bool
        The desired image.

    Examples
    --------
    >>> regular_seeds((5, 5), 4)
    array([[0, 0, 0, 0, 0],
           [0, 1, 0, 2, 0],
           [0, 0, 0, 0, 0],
           [0, 3, 0, 4, 0],
           [0, 0, 0, 0, 0]])
    r   r   )r"   r   ZzerosZreshapeZarangesizeshape)r   r   r   gridZseed_imgr   r   r   regular_seedsV   s    

r&   )numpyr   r"   r   r&   r   r   r   r   <module>   s   R