U
    ?h'                     @   sp   d dl Zd dlmZ ddlmZ ddlmZm	Z	m
Z
 ddlmZmZ ddlmZ dd	 ZdddZdddZdS )    N)ndimage   )_supported_float_type)dilationerosionsquare)img_as_floatview_as_windows)gray2rgbc           
      C   s   | j }t| jj}tdd | jD | j}tdddf| }| ||< tj|jt	d}d||< |||< t
tj|ddd	d
| }t|}t|jD ]2}|| rt||  }	t|	dkrd||< q|S )a#  See ``find_boundaries(..., mode='subpixel')``.

    Notes
    -----
    This function puts in an empty row and column between each *actual*
    row and column of the image, for a corresponding shape of ``2s - 1``
    for every image dimension of size ``s``. These "interstitial" rows
    and columns are filled as ``True`` if they separate two labels in
    `label_img`, ``False`` otherwise.

    I used ``view_as_windows`` to get the neighborhood of each pixel.
    Then I check whether there are two labels or more in that
    neighborhood.
    c                 S   s   g | ]}d | d qS r       .0sr   r   Q/var/www/html/venv/lib/python3.8/site-packages/skimage/segmentation/boundaries.py
<listcomp>   s     z-_find_boundaries_subpixel.<locals>.<listcomp>Nr   )dtypeFr   edgemode)   T)ndimnpiinfor   maxZzerosshapesliceZonesboolr	   padZ
zeros_likeZndindexuniqueZravellen)
	label_imgr   	max_labelZlabel_img_expandedZpixelsedgeswindows
boundariesindexvaluesr   r   r   _find_boundaries_subpixel
   s(    

r)   r   thickc                 C   s   | j dkr| tj} | j}t||}|dkrt| |t| |k}|dkr^| |k}||M }nf|dkrt	| j j
}| |k}	t||}tj| dd}
||
|	< t| |t|
|k|	 @ }||	|B M }|S t| }|S dS )a#  Return bool array where boundaries between labeled regions are True.

    Parameters
    ----------
    label_img : array of int or bool
        An array in which different regions are labeled with either different
        integers or boolean values.
    connectivity : int in {1, ..., `label_img.ndim`}, optional
        A pixel is considered a boundary pixel if any of its neighbors
        has a different label. `connectivity` controls which pixels are
        considered neighbors. A connectivity of 1 (default) means
        pixels sharing an edge (in 2D) or a face (in 3D) will be
        considered neighbors. A connectivity of `label_img.ndim` means
        pixels sharing a corner will be considered neighbors.
    mode : string in {'thick', 'inner', 'outer', 'subpixel'}
        How to mark the boundaries:

        - thick: any pixel not completely surrounded by pixels of the
          same label (defined by `connectivity`) is marked as a boundary.
          This results in boundaries that are 2 pixels thick.
        - inner: outline the pixels *just inside* of objects, leaving
          background pixels untouched.
        - outer: outline pixels in the background around object
          boundaries. When two objects touch, their boundary is also
          marked.
        - subpixel: return a doubled image, with pixels *between* the
          original pixels marked as boundary where appropriate.
    background : int, optional
        For modes 'inner' and 'outer', a definition of a background
        label is required. See `mode` for descriptions of these two.

    Returns
    -------
    boundaries : array of bool, same shape as `label_img`
        A bool image where ``True`` represents a boundary pixel. For
        `mode` equal to 'subpixel', ``boundaries.shape[i]`` is equal
        to ``2 * label_img.shape[i] - 1`` for all ``i`` (a pixel is
        inserted in between all other pairs of pixels).

    Examples
    --------
    >>> labels = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    ...                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    ...                    [0, 0, 0, 0, 0, 5, 5, 5, 0, 0],
    ...                    [0, 0, 1, 1, 1, 5, 5, 5, 0, 0],
    ...                    [0, 0, 1, 1, 1, 5, 5, 5, 0, 0],
    ...                    [0, 0, 1, 1, 1, 5, 5, 5, 0, 0],
    ...                    [0, 0, 0, 0, 0, 5, 5, 5, 0, 0],
    ...                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    ...                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8)
    >>> find_boundaries(labels, mode='thick').astype(np.uint8)
    array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
           [0, 1, 1, 1, 1, 1, 0, 1, 1, 0],
           [0, 1, 1, 0, 1, 1, 0, 1, 1, 0],
           [0, 1, 1, 1, 1, 1, 0, 1, 1, 0],
           [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
           [0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
    >>> find_boundaries(labels, mode='inner').astype(np.uint8)
    array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 1, 0, 1, 0, 0],
           [0, 0, 1, 0, 1, 1, 0, 1, 0, 0],
           [0, 0, 1, 1, 1, 1, 0, 1, 0, 0],
           [0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
    >>> find_boundaries(labels, mode='outer').astype(np.uint8)
    array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 1, 0, 0, 1, 0],
           [0, 1, 0, 0, 1, 1, 0, 0, 1, 0],
           [0, 1, 0, 0, 1, 1, 0, 0, 1, 0],
           [0, 1, 0, 0, 1, 1, 0, 0, 1, 0],
           [0, 0, 1, 1, 1, 1, 0, 0, 1, 0],
           [0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
    >>> labels_small = labels[::2, ::3]
    >>> labels_small
    array([[0, 0, 0, 0],
           [0, 0, 5, 0],
           [0, 1, 5, 0],
           [0, 0, 5, 0],
           [0, 0, 0, 0]], dtype=uint8)
    >>> find_boundaries(labels_small, mode='subpixel').astype(np.uint8)
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 1, 1, 1, 0],
           [0, 0, 0, 1, 0, 1, 0],
           [0, 1, 1, 1, 0, 1, 0],
           [0, 1, 0, 1, 0, 1, 0],
           [0, 1, 1, 1, 0, 1, 0],
           [0, 0, 0, 1, 0, 1, 0],
           [0, 0, 0, 1, 1, 1, 0],
           [0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
    >>> bool_image = np.array([[False, False, False, False, False],
    ...                        [False, False, False, False, False],
    ...                        [False, False,  True,  True,  True],
    ...                        [False, False,  True,  True,  True],
    ...                        [False, False,  True,  True,  True]],
    ...                       dtype=bool)
    >>> find_boundaries(bool_image)
    array([[False, False, False, False, False],
           [False, False,  True,  True,  True],
           [False,  True,  True,  True,  True],
           [False,  True,  True, False, False],
           [False,  True,  True, False, False]])
    r   subpixelinnerouterTcopyN)r   astyper   Zuint8r   ndiZgenerate_binary_structurer   r   r   r   arrayr)   )r"   Zconnectivityr   
backgroundr   Z	footprintr&   Zforeground_imager#   Zbackground_imageZinverted_backgroundZadjacent_objectsr   r   r   find_boundaries0   s4    o

r4   r   r   r   r-   c           
      C   s   t | j}t| dd}|j|dd}|jdkr6t|}|dkrhtj|dd |jd	d
 D dg dd}t	|||d}|d	k	rt
|td}	|||	< |||< |S )a  Return image with boundaries between labeled regions highlighted.

    Parameters
    ----------
    image : (M, N[, 3]) array
        Grayscale or RGB image.
    label_img : (M, N) array of int
        Label array where regions are marked by different integer values.
    color : length-3 sequence, optional
        RGB color of boundaries in the output image.
    outline_color : length-3 sequence, optional
        RGB color surrounding boundaries in the output image. If None, no
        outline is drawn.
    mode : string in {'thick', 'inner', 'outer', 'subpixel'}, optional
        The mode for finding boundaries.
    background_label : int, optional
        Which label to consider background (this is only useful for
        modes ``inner`` and ``outer``).

    Returns
    -------
    marked : (M, N, 3) array of float
        An image in which the boundaries between labels are
        superimposed on the original image.

    See Also
    --------
    find_boundaries
    T)Z
force_copyFr.   r   r+   c                 S   s   g | ]}d d|  qS r   r   r   r   r   r   r      s     z#mark_boundaries.<locals>.<listcomp>Nr   Zmirrorr   )r   r3   r   )r   r   r   r0   r   r
   r1   Zzoomr   r4   r   r   )
imager"   colorZoutline_colorr   Zbackground_labelZfloat_dtypeZmarkedr&   Zoutlinesr   r   r   mark_boundaries   s"    

"r9   )r   r*   r   )r5   Nr-   r   )numpyr   Zscipyr   r1   Z_shared.utilsr   Z
morphologyr   r   r   utilr   r	   r8   r
   r)   r4   r9   r   r   r   r   <module>   s   &
       