U
    ?hIE                     @   s   d dl Z d dlZddlmZmZ ddlmZ ddlm	Z	 ddd	Z
dd
dZdddddZdddddZdddZdd ZddddZd ddddZd!ddddZdS )"    N   )_supported_float_typecheck_nD   )_moments_cy)moments_raw_to_central   c                 C   s   t | d|dS )au  Calculate all raw image moments up to a certain order.

    The following properties can be calculated from raw image moments:
     * Area as: ``M[0, 0]``.
     * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}.

    Note that raw moments are neither translation, scale nor rotation
    invariant.

    Parameters
    ----------
    coords : (N, D) double or uint8 array
        Array of N points that describe an image of D dimensionality in
        Cartesian space.
    order : int, optional
        Maximum order of moments. Default is 3.

    Returns
    -------
    M : (``order + 1``, ``order + 1``, ...) array
        Raw image moments. (D dimensions)

    References
    ----------
    .. [1] Johannes Kilian. Simple Image Analysis By Moments. Durham
           University, version 0.2, Durham, 2001.

    Examples
    --------
    >>> coords = np.array([[row, col]
    ...                    for row in range(13, 17)
    ...                    for col in range(14, 18)], dtype=np.float64)
    >>> M = moments_coords(coords)
    >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0])
    >>> centroid
    (14.5, 15.5)
    r   )order)moments_coords_central)coordsr	    r   J/var/www/html/venv/lib/python3.8/site-packages/skimage/measure/_moments.pymoments_coords
   s    &r   c           	         s   t  trtj dd t d  jd }t j}|dkrNtj dt	d} j
|dd	|  tj fd
dt|d D dd   jd|d    d}t|D ].} dd|f }t|dd| }|| }qtj|dd}|S )a  Calculate all central image moments up to a certain order.

    The following properties can be calculated from raw image moments:
     * Area as: ``M[0, 0]``.
     * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}.

    Note that raw moments are neither translation, scale nor rotation
    invariant.

    Parameters
    ----------
    coords : (N, D) double or uint8 array
        Array of N points that describe an image of D dimensionality in
        Cartesian space. A tuple of coordinates as returned by
        ``np.nonzero`` is also accepted as input.
    center : tuple of float, optional
        Coordinates of the image centroid. This will be computed if it
        is not provided.
    order : int, optional
        Maximum order of moments. Default is 3.

    Returns
    -------
    Mc : (``order + 1``, ``order + 1``, ...) array
        Central image moments. (D dimensions)

    References
    ----------
    .. [1] Johannes Kilian. Simple Image Analysis By Moments. Durham
           University, version 0.2, Durham, 2001.

    Examples
    --------
    >>> coords = np.array([[row, col]
    ...                    for row in range(13, 17)
    ...                    for col in range(14, 18)])
    >>> moments_coords_central(coords)
    array([[16.,  0., 20.,  0.],
           [ 0.,  0.,  0.,  0.],
           [20.,  0., 25.,  0.],
           [ 0.,  0.,  0.,  0.]])

    As seen above, for symmetric objects, odd-order moments (columns 1 and 3,
    rows 1 and 3) are zero when centered on the centroid, or center of mass,
    of the object (the default). If we break the symmetry by adding a new
    point, this no longer holds:

    >>> coords2 = np.concatenate((coords, [[17, 17]]), axis=0)
    >>> np.round(moments_coords_central(coords2),
    ...          decimals=2)  # doctest: +NORMALIZE_WHITESPACE
    array([[17.  ,  0.  , 22.12, -2.49],
           [ 0.  ,  3.53,  1.73,  7.4 ],
           [25.88,  6.02, 36.63,  8.83],
           [ 4.15, 19.17, 14.8 , 39.6 ]])

    Image moments and central image moments are equivalent (by definition)
    when the center is (0, 0):

    >>> np.allclose(moments_coords(coords),
    ...             moments_coords_central(coords, (0, 0)))
    True
    )axisr   r   Nr   )r   dtypeFcopyc                    s   g | ]} | qS r   r   ).0cr   r   r   
<listcomp>   s     z*moments_coords_central.<locals>.<listcomp>)r   )
isinstancetuplenpstackr   shaper   r   ZmeanfloatastyperangeZreshapeZmoveaxissum)	r   centerr	   ndimZ
float_typecalcr   Zisolated_axisZMcr   r   r   r
   3   s"    ?



$
r
   spacingc                C   s   t | d| j ||dS )u  Calculate all raw image moments up to a certain order.

    The following properties can be calculated from raw image moments:
     * Area as: ``M[0, 0]``.
     * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}.

    Note that raw moments are neither translation, scale nor rotation
    invariant.

    Parameters
    ----------
    image : nD double or uint8 array
        Rasterized shape as image.
    order : int, optional
        Maximum order of moments. Default is 3.
    spacing: tuple of float, shape (ndim, )
        The pixel spacing along each axis of the image.

    Returns
    -------
    m : (``order + 1``, ``order + 1``) array
        Raw image moments.

    References
    ----------
    .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing:
           Core Algorithms. Springer-Verlag, London, 2009.
    .. [2] B. Jähne. Digital Image Processing. Springer-Verlag,
           Berlin-Heidelberg, 6. edition, 2005.
    .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image
           Features, from Lecture notes in computer science, p. 676. Springer,
           Berlin, 1993.
    .. [4] https://en.wikipedia.org/wiki/Image_moment

    Examples
    --------
    >>> image = np.zeros((20, 20), dtype=np.float64)
    >>> image[13:17, 13:17] = 1
    >>> M = moments(image)
    >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0])
    >>> centroid
    (14.5, 14.5)
    r   r	   r%   )moments_centralr"   )imager	   r%   r   r   r   moments   s    ,r*   c                K   s   |dkrt | ||d}t|S |dkr2t| j}t| j}| j|dd}t| j	D ]t\}}	tj
|	|d||  ||  }
|
ddtjf tj
|d |d }t||| j}t||}t|d|}qT|S )u  Calculate all central image moments up to a certain order.

    The center coordinates (cr, cc) can be calculated from the raw moments as:
    {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}.

    Note that central moments are translation invariant but not scale and
    rotation invariant.

    Parameters
    ----------
    image : nD double or uint8 array
        Rasterized shape as image.
    center : tuple of float, optional
        Coordinates of the image centroid. This will be computed if it
        is not provided.
    order : int, optional
        The maximum order of moments computed.
    spacing: tuple of float, shape (ndim, )
        The pixel spacing along each axis of the image.

    Returns
    -------
    mu : (``order + 1``, ``order + 1``) array
        Central image moments.

    References
    ----------
    .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing:
           Core Algorithms. Springer-Verlag, London, 2009.
    .. [2] B. Jähne. Digital Image Processing. Springer-Verlag,
           Berlin-Heidelberg, 6. edition, 2005.
    .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image
           Features, from Lecture notes in computer science, p. 676. Springer,
           Berlin, 1993.
    .. [4] https://en.wikipedia.org/wiki/Image_moment

    Examples
    --------
    >>> image = np.zeros((20, 20), dtype=np.float64)
    >>> image[13:17, 13:17] = 1
    >>> M = moments(image)
    >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0])
    >>> moments_central(image, centroid)
    array([[16.,  0., 20.,  0.],
           [ 0.,  0.,  0.,  0.],
           [20.,  0., 25.,  0.],
           [ 0.,  0.,  0.,  0.]])
    Nr'   Fr   r   r   r   )r*   r   r   onesr"   r   r   r   	enumerater   ZarangeZnewaxisZrollaxisdot)r)   r!   r	   r%   kwargsZmoments_rawZfloat_dtyper#   dimZ
dim_lengthdeltaZpowers_of_deltar   r   r   r(      s     1
"r(   c                 C   s   t t | j|krtd|dkr2t | j}t | }|  d }t	|}t
jt|d | jdD ]J}t|dk rt j||< qh| | |t|  |t||j d   ||< qh|S )u  Calculate all normalized central image moments up to a certain order.

    Note that normalized central moments are translation and scale invariant
    but not rotation invariant.

    Parameters
    ----------
    mu : (M,[ ...,] M) array
        Central image moments, where M must be greater than or equal
        to ``order``.
    order : int, optional
        Maximum order of moments. Default is 3.

    Returns
    -------
    nu : (``order + 1``,[ ...,] ``order + 1``) array
        Normalized central image moments.

    References
    ----------
    .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing:
           Core Algorithms. Springer-Verlag, London, 2009.
    .. [2] B. Jähne. Digital Image Processing. Springer-Verlag,
           Berlin-Heidelberg, 6. edition, 2005.
    .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image
           Features, from Lecture notes in computer science, p. 676. Springer,
           Berlin, 1993.
    .. [4] https://en.wikipedia.org/wiki/Image_moment

    Examples
    --------
    >>> image = np.zeros((20, 20), dtype=np.float64)
    >>> image[13:17, 13:17] = 1
    >>> m = moments(image)
    >>> centroid = (m[0, 1] / m[0, 0], m[1, 0] / m[0, 0])
    >>> mu = moments_central(image, centroid)
    >>> moments_normalized(mu)
    array([[       nan,        nan, 0.078125  , 0.        ],
           [       nan, 0.        , 0.        , 0.        ],
           [0.078125  , 0.        , 0.00610352, 0.        ],
           [0.        , 0.        , 0.        , 0.        ]])
    z)Shape of image moments must be >= `order`Nr   r   )repeatr   )r   anyarrayr   
ValueErrorr,   r"   Z
zeros_likeZravelmin	itertoolsproductr   r    nan)mur	   r%   numu0scaleZpowersr   r   r   moments_normalized  s    +
0r>   c                 C   s*   | j dkrtjntj}t| j|ddS )u@  Calculate Hu's set of image moments (2D-only).

    Note that this set of moments is proved to be translation, scale and
    rotation invariant.

    Parameters
    ----------
    nu : (M, M) array
        Normalized central image moments, where M must be >= 4.

    Returns
    -------
    nu : (7,) array
        Hu's set of image moments.

    References
    ----------
    .. [1] M. K. Hu, "Visual Pattern Recognition by Moment Invariants",
           IRE Trans. Info. Theory, vol. IT-8, pp. 179-187, 1962
    .. [2] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing:
           Core Algorithms. Springer-Verlag, London, 2009.
    .. [3] B. Jähne. Digital Image Processing. Springer-Verlag,
           Berlin-Heidelberg, 6. edition, 2005.
    .. [4] T. H. Reiss. Recognizing Planar Objects Using Invariant Image
           Features, from Lecture notes in computer science, p. 676. Springer,
           Berlin, 1993.
    .. [5] https://en.wikipedia.org/wiki/Image_moment

    Examples
    --------
    >>> image = np.zeros((20, 20), dtype=np.float64)
    >>> image[13:17, 13:17] = 0.5
    >>> image[10:12, 10:12] = 1
    >>> mu = moments_central(image)
    >>> nu = moments_normalized(mu)
    >>> moments_hu(nu)
    array([0.74537037, 0.35116598, 0.10404918, 0.04064421, 0.00264312,
           0.02408546, 0.        ])
    float32Fr   )r   r   r?   Zfloat64r   
moments_hur   )r;   r   r   r   r   r@   J  s    (r@   c                C   s@   t | d| j d|d}|ttj| jtd |d| j   }|S )a5  Return the (weighted) centroid of an image.

    Parameters
    ----------
    image : array
        The input image.
    spacing: tuple of float, shape (ndim, )
        The pixel spacing along each axis of the image.

    Returns
    -------
    center : tuple of float, length ``image.ndim``
        The centroid of the (nonzero) pixels in ``image``.

    Examples
    --------
    >>> image = np.zeros((20, 20), dtype=np.float64)
    >>> image[13:17, 13:17] = 0.5
    >>> image[10:12, 10:12] = 1
    >>> centroid(image)
    array([13.16666667, 13.16666667])
    r&   r   )r!   r	   r%   r+   )r(   r"   r   r   eyeint)r)   r%   Mr!   r   r   r   centroidv  s
    rD   c          	      C   s   |dkrt | d|d}|d| j  }tj| j| jf|jd}tdtj| jtd }t|}d|j	_
t|| ||  | |dd< tt| jdD ]N}tj| jtd}d|t|< |t|  | ||< |t|  | |j|< q|S )uU  Compute the inertia tensor of the input image.

    Parameters
    ----------
    image : array
        The input image.
    mu : array, optional
        The pre-computed central moments of ``image``. The inertia tensor
        computation requires the central moments of the image. If an
        application requires both the central moments and the inertia tensor
        (for example, `skimage.measure.regionprops`), then it is more
        efficient to pre-compute them and pass them to the inertia tensor
        call.
    spacing: tuple of float, shape (ndim, )
        The pixel spacing along each axis of the image.

    Returns
    -------
    T : array, shape ``(image.ndim, image.ndim)``
        The inertia tensor of the input image. :math:`T_{i, j}` contains
        the covariance of image intensity along axes :math:`i` and :math:`j`.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Moment_of_inertia#Inertia_tensor
    .. [2] Bernd Jähne. Spatio-Temporal Image Processing: Theory and
           Scientific Applications. (Chapter 8: Tensor Methods) Springer, 1993.
    Nr   r'   r&   r+   Tr   )r(   r"   r   Zzerosr   r   rA   rB   ZdiagflagsZ	writeabler    r7   combinationsr   listT)	r)   r:   r%   r<   resultZcorners2dZdimsZmu_indexr   r   r   inertia_tensor  s    
"rK   c                C   s@   |dkrt | ||d}tj|}tj|dd|d}t|ddS )al  Compute the eigenvalues of the inertia tensor of the image.

    The inertia tensor measures covariance of the image intensity along
    the image axes. (See `inertia_tensor`.) The relative magnitude of the
    eigenvalues of the tensor is thus a measure of the elongation of a
    (bright) object in the image.

    Parameters
    ----------
    image : array
        The input image.
    mu : array, optional
        The pre-computed central moments of ``image``.
    T : array, shape ``(image.ndim, image.ndim)``
        The pre-computed inertia tensor. If ``T`` is given, ``mu`` and
        ``image`` are ignored.
    spacing: tuple of float, shape (ndim, )
        The pixel spacing along each axis of the image.

    Returns
    -------
    eigvals : list of float, length ``image.ndim``
        The eigenvalues of the inertia tensor of ``image``, in descending
        order.

    Notes
    -----
    Computing the eigenvalues requires the inertia tensor of the input image.
    This is much faster if the central moments (``mu``) are provided, or,
    alternatively, one can provide the inertia tensor (``T``) directly.
    Nr$   r   )outT)reverse)rK   r   ZlinalgZeigvalshZclipsorted)r)   r:   rH   r%   Zeigvalsr   r   r   inertia_tensor_eigvals  s
     rO   )r   )Nr   )r   )Nr   )r   N)N)NN)r7   numpyr   Z_shared.utilsr   r    r   Z_moments_analyticalr   r   r
   r*   r(   r>   r@   rD   rK   rO   r   r   r   r   <module>   s   
)
g/G
:,6