import warnings

import numpy as np
import pytest
from numpy.testing import (assert_allclose,
                           assert_almost_equal,
                           assert_array_almost_equal,
                           assert_array_equal,
                           assert_equal)

from skimage import data
from skimage import exposure
from skimage import util
from skimage.color import rgb2gray
from skimage.exposure.exposure import intensity_range
from skimage.util.dtype import dtype_range
from skimage._shared._warnings import expected_warnings
from skimage._shared.utils import _supported_float_type


# Test integer histograms
# =======================

@pytest.mark.parametrize('dtype', [np.int8, np.float32])
def test_wrong_source_range(dtype):
    im = np.array([-1, 100], dtype=dtype)
    with pytest.raises(ValueError, match="Incorrect value for `source_range` argument"):
        frequencies, bin_centers = exposure.histogram(im,
                                                      source_range='foobar')


def test_negative_overflow():
    im = np.array([-1, 100], dtype=np.int8)
    frequencies, bin_centers = exposure.histogram(im)
    assert_array_equal(bin_centers, np.arange(-1, 101))
    assert frequencies[0] == 1
    assert frequencies[-1] == 1
    assert_array_equal(frequencies[1:-1], 0)


def test_all_negative_image():
    im = np.array([-100, -1], dtype=np.int8)
    frequencies, bin_centers = exposure.histogram(im)
    assert_array_equal(bin_centers, np.arange(-100, 0))
    assert frequencies[0] == 1
    assert frequencies[-1] == 1
    assert_array_equal(frequencies[1:-1], 0)


def test_int_range_image():
    im = np.array([10, 100], dtype=np.int8)
    frequencies, bin_centers = exposure.histogram(im)
    assert_equal(len(bin_centers), len(frequencies))
    assert_equal(bin_centers[0], 10)
    assert_equal(bin_centers[-1], 100)


def test_multichannel_int_range_image():
    im = np.array([[10, 5], [100, 102]], dtype=np.int8)
    frequencies, bin_centers = exposure.histogram(im, channel_axis=-1)
    for ch in range(im.shape[-1]):
        assert_equal(len(frequencies[ch]), len(bin_centers))
    assert_equal(bin_centers[0], 5)
    assert_equal(bin_centers[-1], 102)


def test_peak_uint_range_dtype():
    im = np.array([10, 100], dtype=np.uint8)
    frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
    assert_array_equal(bin_centers, np.arange(0, 256))
    assert_equal(frequencies[10], 1)
    assert_equal(frequencies[100], 1)
    assert_equal(frequencies[101], 0)
    assert_equal(frequencies.shape, (256,))


def test_peak_int_range_dtype():
    im = np.array([10, 100], dtype=np.int8)
    frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
    assert_array_equal(bin_centers, np.arange(-128, 128))
    assert_equal(frequencies[128+10], 1)
    assert_equal(frequencies[128+100], 1)
    assert_equal(frequencies[128+101], 0)
    assert_equal(frequencies.shape, (256,))


def test_flat_uint_range_dtype():
    im = np.linspace(0, 255, 256, dtype=np.uint8)
    frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
    assert_array_equal(bin_centers, np.arange(0, 256))
    assert_equal(frequencies.shape, (256,))


def test_flat_int_range_dtype():
    im = np.linspace(-128, 128, 256, dtype=np.int8)
    frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
    assert_array_equal(bin_centers, np.arange(-128, 128))
    assert_equal(frequencies.shape, (256,))


@pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
def test_peak_float_out_of_range_image(dtype):
    im = np.array([10, 100], dtype=dtype)
    frequencies, bin_centers = exposure.histogram(im, nbins=90)
    assert bin_centers.dtype == dtype
    # offset values by 0.5 for float...
    assert_array_equal(bin_centers, np.arange(10, 100) + 0.5)


@pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
def test_peak_float_out_of_range_dtype(dtype):
    im = np.array([10, 100], dtype=dtype)
    nbins = 10
    frequencies, bin_centers = exposure.histogram(im, nbins=nbins,
                                                  source_range='dtype')
    assert bin_centers.dtype == dtype
    assert_almost_equal(np.min(bin_centers), -0.9, 3)
    assert_almost_equal(np.max(bin_centers), 0.9, 3)
    assert_equal(len(bin_centers), 10)


def test_normalize():
    im = np.array([0, 255, 255], dtype=np.uint8)
    frequencies, bin_centers = exposure.histogram(im, source_range='dtype',
                                                  normalize=False)
    expected = np.zeros(256)
    expected[0] = 1
    expected[-1] = 2
    assert_equal(frequencies, expected)
    frequencies, bin_centers = exposure.histogram(im, source_range='dtype',
                                                  normalize=True)
    expected /= 3.
    assert_equal(frequencies, expected)


# Test multichannel histograms
# ============================

@pytest.mark.parametrize('source_range', ['dtype', 'image'])
@pytest.mark.parametrize('dtype', [np.uint8, np.int16, np.float64])
@pytest.mark.parametrize('channel_axis', [0, 1, -1])
def test_multichannel_hist_common_bins_uint8(dtype, source_range,
                                             channel_axis):
    """Check that all channels use the same binning."""
    # Construct multichannel image with uniform values within each channel,
    # but the full range of values across channels.
    shape = (5, 5)
    channel_size = shape[0] * shape[1]
    imin, imax = dtype_range[dtype]
    im = np.stack(
        (
            np.full(shape, imin, dtype=dtype),
            np.full(shape, imax, dtype=dtype),
        ),
        axis=channel_axis
    )
    frequencies, bin_centers = exposure.histogram(
        im, source_range=source_range, channel_axis=channel_axis
    )
    if np.issubdtype(dtype, np.integer):
        assert_array_equal(bin_centers, np.arange(imin, imax + 1))
    assert frequencies[0][0] == channel_size
    assert frequencies[0][-1] == 0
    assert frequencies[1][0] == 0
    assert frequencies[1][-1] == channel_size


# Test histogram equalization
# ===========================

np.random.seed(0)

test_img_int = data.camera()
# squeeze image intensities to lower image contrast
test_img = util.img_as_float(test_img_int)
test_img = exposure.rescale_intensity(test_img / 5. + 100)


def test_equalize_uint8_approx():
    """Check integer bins used for uint8 images."""
    img_eq0 = exposure.equalize_hist(test_img_int)
    img_eq1 = exposure.equalize_hist(test_img_int, nbins=3)
    assert_allclose(img_eq0, img_eq1)


def test_equalize_ubyte():
    img = util.img_as_ubyte(test_img)
    img_eq = exposure.equalize_hist(img)

    cdf, bin_edges = exposure.cumulative_distribution(img_eq)
    check_cdf_slope(cdf)


@pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
def test_equalize_float(dtype):
    img = util.img_as_float(test_img).astype(dtype, copy=False)
    img_eq = exposure.equalize_hist(img)
    assert img_eq.dtype == _supported_float_type(dtype)

    cdf, bin_edges = exposure.cumulative_distribution(img_eq)
    check_cdf_slope(cdf)
    assert bin_edges.dtype == _supported_float_type(dtype)


def test_equalize_masked():
    img = util.img_as_float(test_img)
    mask = np.zeros(test_img.shape)
    mask[100:400, 100:400] = 1
    img_mask_eq = exposure.equalize_hist(img, mask=mask)
    img_eq = exposure.equalize_hist(img)

    cdf, bin_edges = exposure.cumulative_distribution(img_mask_eq)
    check_cdf_slope(cdf)

    assert not (img_eq == img_mask_eq).all()


def check_cdf_slope(cdf):
    """Slope of cdf which should equal 1 for an equalized histogram."""
    norm_intensity = np.linspace(0, 1, len(cdf))
    slope, intercept = np.polyfit(norm_intensity, cdf, 1)
    assert 0.9 < slope < 1.1


# Test intensity range
# ====================


@pytest.mark.parametrize("test_input,expected", [
    ('image', [0, 1]),
    ('dtype', [0, 255]),
    ((10, 20), [10, 20])
])
def test_intensity_range_uint8(test_input, expected):
    image = np.array([0, 1], dtype=np.uint8)
    out = intensity_range(image, range_values=test_input)
    assert_array_equal(out, expected)


@pytest.mark.parametrize("test_input,expected", [
    ('image', [0.1, 0.2]),
    ('dtype', [-1, 1]),
    ((0.3, 0.4), [0.3, 0.4])
])
def test_intensity_range_float(test_input, expected):
    image = np.array([0.1, 0.2], dtype=np.float64)
    out = intensity_range(image, range_values=test_input)
    assert_array_equal(out, expected)


def test_intensity_range_clipped_float():
    image = np.array([0.1, 0.2], dtype=np.float64)
    out = intensity_range(image, range_values='dtype', clip_negative=True)
    assert_array_equal(out, (0, 1))


# Test rescale intensity
# ======================

uint10_max = 2**10 - 1
uint12_max = 2**12 - 1
uint14_max = 2**14 - 1
uint16_max = 2**16 - 1


def test_rescale_stretch():
    image = np.array([51, 102, 153], dtype=np.uint8)
    out = exposure.rescale_intensity(image)
    assert out.dtype == np.uint8
    assert_array_almost_equal(out, [0, 127, 255])


def test_rescale_shrink():
    image = np.array([51., 102., 153.])
    out = exposure.rescale_intensity(image)
    assert_array_almost_equal(out, [0, 0.5, 1])


@pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
def test_rescale_in_range(dtype):
    image = np.array([51., 102., 153.], dtype=dtype)
    out = exposure.rescale_intensity(image, in_range=(0, 255))
    assert_array_almost_equal(out, [0.2, 0.4, 0.6], decimal=4)
    # with out_range='dtype', the output has the same dtype
    assert out.dtype == image.dtype


def test_rescale_in_range_clip():
    image = np.array([51., 102., 153.])
    out = exposure.rescale_intensity(image, in_range=(0, 102))
    assert_array_almost_equal(out, [0.5, 1, 1])


@pytest.mark.parametrize('dtype', [np.int8, np.int32, np.float16, np.float32,
                                   np.float64])
def test_rescale_out_range(dtype):
    """Check that output range is correct.

    .. versionchanged:: 0.17
        This function used to return dtype matching the input dtype. It now
        matches the output.

    .. versionchanged:: 0.19
        float16 and float32 inputs now result in float32 output. Formerly they
        would give float64 outputs.
    """
    image = np.array([-10, 0, 10], dtype=dtype)
    out = exposure.rescale_intensity(image, out_range=(0, 127))
    assert out.dtype == _supported_float_type(image.dtype)
    assert_array_almost_equal(out, [0, 63.5, 127])


def test_rescale_named_in_range():
    image = np.array([0, uint10_max, uint10_max + 100], dtype=np.uint16)
    out = exposure.rescale_intensity(image, in_range='uint10')
    assert_array_almost_equal(out, [0, uint16_max, uint16_max])


def test_rescale_named_out_range():
    image = np.array([0, uint16_max], dtype=np.uint16)
    out = exposure.rescale_intensity(image, out_range='uint10')
    assert_array_almost_equal(out, [0, uint10_max])


def test_rescale_uint12_limits():
    image = np.array([0, uint16_max], dtype=np.uint16)
    out = exposure.rescale_intensity(image, out_range='uint12')
    assert_array_almost_equal(out, [0, uint12_max])


def test_rescale_uint14_limits():
    image = np.array([0, uint16_max], dtype=np.uint16)
    out = exposure.rescale_intensity(image, out_range='uint14')
    assert_array_almost_equal(out, [0, uint14_max])


def test_rescale_all_zeros():
    image = np.zeros((2, 2), dtype=np.uint8)
    out = exposure.rescale_intensity(image)
    assert ~np.isnan(out).all()
    assert_array_almost_equal(out, image)


def test_rescale_constant():
    image = np.array([130, 130], dtype=np.uint16)
    out = exposure.rescale_intensity(image, out_range=(0, 127))
    assert_array_almost_equal(out, [127, 127])


def test_rescale_same_values():
    image = np.ones((2, 2))
    out = exposure.rescale_intensity(image)
    assert ~np.isnan(out).all()
    assert_array_almost_equal(out, image)


@pytest.mark.parametrize(
    "in_range,out_range", [("image", "dtype"),
                           ("dtype", "image")]
)
def test_rescale_nan_warning(in_range, out_range):
    image = np.arange(12, dtype=float).reshape(3, 4)
    image[1, 1] = np.nan

    msg = (
        r"One or more intensity levels are NaN\."
        r" Rescaling will broadcast NaN to the full image\."
    )

    # 2019/11/10 Passing NaN to np.clip raises a DeprecationWarning for
    # versions above 1.17
    # TODO: Remove once NumPy removes this DeprecationWarning
    numpy_warning_1_17_plus = (
        "Passing `np.nan` to mean no clipping in np.clip"
    )

    if in_range == "image":
        exp_warn = [msg, numpy_warning_1_17_plus]
    else:
        exp_warn = [msg]

    with expected_warnings(exp_warn):
        exposure.rescale_intensity(image, in_range, out_range)


@pytest.mark.parametrize(
    "out_range, out_dtype", [
        ('uint8', np.uint8),
        ('uint10', np.uint16),
        ('uint12', np.uint16),
        ('uint16', np.uint16),
        ('float', float),
    ]
)
def test_rescale_output_dtype(out_range, out_dtype):
    image = np.array([-128, 0, 127], dtype=np.int8)
    output_image = exposure.rescale_intensity(image, out_range=out_range)
    assert output_image.dtype == out_dtype


def test_rescale_no_overflow():
    image = np.array([-128, 0, 127], dtype=np.int8)
    output_image = exposure.rescale_intensity(image, out_range=np.uint8)
    assert_array_equal(output_image, [0, 128, 255])
    assert output_image.dtype == np.uint8


def test_rescale_float_output():
    image = np.array([-128, 0, 127], dtype=np.int8)
    output_image = exposure.rescale_intensity(image, out_range=(0, 255))
    assert_array_equal(output_image, [0, 128, 255])
    assert output_image.dtype == float


def test_rescale_raises_on_incorrect_out_range():
    image = np.array([-128, 0, 127], dtype=np.int8)
    with pytest.raises(ValueError):
        _ = exposure.rescale_intensity(image, out_range='flat')


# Test adaptive histogram equalization
# ====================================

@pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
def test_adapthist_grayscale(dtype):
    """Test a grayscale float image
    """
    img = util.img_as_float(data.astronaut()).astype(dtype, copy=False)
    img = rgb2gray(img)
    img = np.dstack((img, img, img))
    adapted = exposure.equalize_adapthist(img, kernel_size=(57, 51),
                                          clip_limit=0.01, nbins=128)
    assert img.shape == adapted.shape
    assert adapted.dtype == _supported_float_type(dtype)
    snr_decimal = 3 if dtype != np.float16 else 2
    assert_almost_equal(peak_snr(img, adapted), 100.140, snr_decimal)
    assert_almost_equal(norm_brightness_err(img, adapted), 0.0529, 3)


def test_adapthist_color():
    """Test an RGB color uint16 image
    """
    img = util.img_as_uint(data.astronaut())
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        hist, bin_centers = exposure.histogram(img)
        assert len(w) > 0
    adapted = exposure.equalize_adapthist(img, clip_limit=0.01)

    assert adapted.min() == 0
    assert adapted.max() == 1.0
    assert img.shape == adapted.shape
    full_scale = exposure.rescale_intensity(img)
    assert_almost_equal(peak_snr(full_scale, adapted), 109.393, 1)
    assert_almost_equal(norm_brightness_err(full_scale, adapted), 0.02, 2)


def test_adapthist_alpha():
    """Test an RGBA color image
    """
    img = util.img_as_float(data.astronaut())
    alpha = np.ones((img.shape[0], img.shape[1]), dtype=float)
    img = np.dstack((img, alpha))
    adapted = exposure.equalize_adapthist(img)
    assert adapted.shape != img.shape
    img = img[:, :, :3]
    full_scale = exposure.rescale_intensity(img)
    assert img.shape == adapted.shape
    assert_almost_equal(peak_snr(full_scale, adapted), 109.393, 2)
    assert_almost_equal(norm_brightness_err(full_scale, adapted), 0.0248, 3)


def test_adapthist_grayscale_Nd():
    """
    Test for n-dimensional consistency with float images
    Note: Currently if img.ndim == 3, img.shape[2] > 4 must hold for the image
    not to be interpreted as a color image by @adapt_rgb
    """
    # take 2d image, subsample and stack it
    img = util.img_as_float(data.astronaut())
    img = rgb2gray(img)
    a = 15
    img2d = util.img_as_float(img[0:-1:a, 0:-1:a])
    img3d = np.array([img2d] * (img.shape[0] // a))

    # apply CLAHE
    adapted2d = exposure.equalize_adapthist(img2d,
                                            kernel_size=5,
                                            clip_limit=0.05)
    adapted3d = exposure.equalize_adapthist(img3d,
                                            kernel_size=5,
                                            clip_limit=0.05)

    # check that dimensions of input and output match
    assert img2d.shape == adapted2d.shape
    assert img3d.shape == adapted3d.shape

    # check that the result from the stack of 2d images is similar
    # to the underlying 2d image
    assert np.mean(np.abs(adapted2d
                          - adapted3d[adapted3d.shape[0] // 2])) < 0.02


def test_adapthist_constant():
    """Test constant image, float and uint
    """
    img = np.zeros((8, 8))
    img += 2
    img = img.astype(np.uint16)
    adapted = exposure.equalize_adapthist(img, 3)
    assert np.min(adapted) == np.max(adapted)

    img = np.zeros((8, 8))
    img += 0.1
    img = img.astype(np.float64)
    adapted = exposure.equalize_adapthist(img, 3)
    assert np.min(adapted) == np.max(adapted)


def test_adapthist_borders():
    """Test border processing
    """
    img = rgb2gray(util.img_as_float(data.astronaut()))

    # maximize difference between orig and processed img
    img /= 100.
    img[img.shape[0] // 2, img.shape[1] // 2] = 1.

    # check borders are processed for different kernel sizes
    border_index = -1
    for kernel_size in range(51, 71, 2):
        adapted = exposure.equalize_adapthist(img, kernel_size, clip_limit=0.5)
        # Check last columns are processed
        assert norm_brightness_err(adapted[:, border_index],
                                   img[:, border_index]) > 0.1
        # Check last rows are processed
        assert norm_brightness_err(adapted[border_index, :],
                                   img[border_index, :]) > 0.1


def test_adapthist_clip_limit():
    img_u = data.moon()
    img_f = util.img_as_float(img_u)

    # uint8 input
    img_clahe0 = exposure.equalize_adapthist(img_u, clip_limit=0)
    img_clahe1 = exposure.equalize_adapthist(img_u, clip_limit=1)
    assert_array_equal(img_clahe0, img_clahe1)

    # float64 input
    img_clahe0 = exposure.equalize_adapthist(img_f, clip_limit=0)
    img_clahe1 = exposure.equalize_adapthist(img_f, clip_limit=1)
    assert_array_equal(img_clahe0, img_clahe1)


def peak_snr(img1, img2):
    """Peak signal to noise ratio of two images

    Parameters
    ----------
    img1 : array-like
    img2 : array-like

    Returns
    -------
    peak_snr : float
        Peak signal to noise ratio
    """
    if img1.ndim == 3:
        img1, img2 = rgb2gray(img1.copy()), rgb2gray(img2.copy())
    img1 = util.img_as_float(img1)
    img2 = util.img_as_float(img2)
    mse = 1. / img1.size * np.square(img1 - img2).sum()
    _, max_ = dtype_range[img1.dtype.type]
    return 20 * np.log(max_ / mse)


def norm_brightness_err(img1, img2):
    """Normalized Absolute Mean Brightness Error between two images

    Parameters
    ----------
    img1 : array-like
    img2 : array-like

    Returns
    -------
    norm_brightness_error : float
        Normalized absolute mean brightness error
    """
    if img1.ndim == 3:
        img1, img2 = rgb2gray(img1), rgb2gray(img2)
    ambe = np.abs(img1.mean() - img2.mean())
    nbe = ambe / dtype_range[img1.dtype.type][1]
    return nbe


def test_adapthist_incorrect_kernel_size():
    img = np.ones((8, 8), dtype=float)
    with pytest.raises(ValueError, match="Incorrect value of `kernel_size`"):
        exposure.equalize_adapthist(img, (3, 3, 3))


# Test Gamma Correction
# =====================

def test_adjust_gamma_1x1_shape():
    """Check that the shape is maintained"""
    img = np.ones([1, 1])
    result = exposure.adjust_gamma(img, 1.5)
    assert img.shape == result.shape


def test_adjust_gamma_one():
    """Same image should be returned for gamma equal to one"""
    image = np.arange(0, 256, dtype=np.uint8).reshape((16, 16))
    result = exposure.adjust_gamma(image, 1)
    assert_array_equal(result, image)


@pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
def test_adjust_gamma_zero(dtype):
    """White image should be returned for gamma equal to zero"""
    image = np.random.uniform(0, 255, (8, 8)).astype(dtype, copy=False)
    result = exposure.adjust_gamma(image, 0)
    dtype = image.dtype.type
    assert_array_equal(result, dtype_range[dtype][1])
    assert result.dtype == image.dtype


def test_adjust_gamma_less_one():
    """Verifying the output with expected results for gamma
    correction with gamma equal to half"""
    image = np.arange(0, 256, dtype=np.uint8).reshape((16, 16))

    expected = np.array([0, 16, 23, 28, 32, 36, 39, 42, 45, 48, 50,
                         53, 55, 58, 60, 62, 64, 66, 68, 70, 71, 73,
                         75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90,
                         92, 93, 94, 96, 97, 98, 100, 101, 102, 103,
                         105, 106, 107, 108, 109, 111, 112, 113, 114,
                         115, 116, 117, 118, 119, 121, 122, 123, 124,
                         125, 126, 127, 128, 129, 130, 131, 132, 133,
                         134, 135, 135, 136, 137, 138, 139, 140, 141,
                         142, 143, 144, 145, 145, 146, 147, 148, 149,
                         150, 151, 151, 152, 153, 154, 155, 156, 156,
                         157, 158, 159, 160, 160, 161, 162, 163, 164,
                         164, 165, 166, 167, 167, 168, 169, 170, 170,
                         171, 172, 173, 173, 174, 175, 176, 176, 177,
                         178, 179, 179, 180, 181, 181, 182, 183, 183,
                         184, 185, 186, 186, 187, 188, 188, 189, 190,
                         190, 191, 192, 192, 193, 194, 194, 195, 196,
                         196, 197, 198, 198, 199, 199, 200, 201, 201,
                         202, 203, 203, 204, 204, 205, 206, 206, 207,
                         208, 208, 209, 209, 210, 211, 211, 212, 212,
                         213, 214, 214, 215, 215, 216, 217, 217, 218,
                         218, 219, 220, 220, 221, 221, 222, 222, 223,
                         224, 224, 225, 225, 226, 226, 227, 228, 228,
                         229, 229, 230, 230, 231, 231, 232, 233, 233,
                         234, 234, 235, 235, 236, 236, 237, 237, 238,
                         238, 239, 240, 240, 241, 241, 242, 242, 243,
                         243, 244, 244, 245, 245, 246, 246, 247, 247,
                         248, 248, 249, 249, 250, 250, 251, 251, 252,
                         252, 253, 253, 254, 254, 255],
                        dtype=np.uint8).reshape((16, 16))

    result = exposure.adjust_gamma(image, 0.5)
    assert_array_equal(result, expected)


def test_adjust_gamma_greater_one():
    """Verifying the output with expected results for gamma
    correction with gamma equal to two"""
    image = np.arange(0, 256, dtype=np.uint8).reshape((16, 16))

    expected = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
                         1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,
                         4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8,
                         8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12,
                         13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18,
                         18, 19, 19, 20, 20, 21, 21, 22, 23, 23, 24,
                         24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31,
                         32, 32, 33, 34, 35, 35, 36, 37, 38, 38, 39,
                         40, 41, 42, 42, 43, 44, 45, 46, 47, 47, 48,
                         49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58,
                         59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
                         70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81,
                         82, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94,
                         95, 97, 98, 99, 100, 102, 103, 104, 105,
                         107, 108, 109, 111, 112, 113, 115, 116, 117,
                         119, 120, 121, 123, 124, 126, 127, 128, 130,
                         131, 133, 134, 136, 137, 139, 140, 142, 143,
                         145, 146, 148, 149, 151, 152, 154, 155, 157,
                         158, 160, 162, 163, 165, 166, 168, 170, 171,
                         173, 175, 176, 178, 180, 181, 183, 185, 186,
                         188, 190, 192, 193, 195, 197, 199, 200, 202,
                         204, 206, 207, 209, 211, 213, 215, 217, 218,
                         220, 222, 224, 226, 228, 230, 232, 233, 235,
                         237, 239, 241, 243, 245, 247, 249, 251, 253,
                         255] , dtype=np.uint8).reshape((16, 16))

    result = exposure.adjust_gamma(image, 2)
    assert_array_equal(result, expected)


def test_adjust_gamma_negative():
    image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
    with pytest.raises(ValueError):
        exposure.adjust_gamma(image, -1)


def test_adjust_gamma_u8_overflow():
    img = 255 * np.ones((2, 2), dtype=np.uint8)

    assert np.all(exposure.adjust_gamma(img, gamma=1, gain=1.1) == 255)


# Test Logarithmic Correction
# ===========================

@pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
def test_adjust_log_1x1_shape(dtype):
    """Check that the shape is maintained"""
    img = np.ones([1, 1], dtype=dtype)
    result = exposure.adjust_log(img, 1)
    assert img.shape == result.shape
    assert result.dtype == dtype


def test_adjust_log():
    """Verifying the output with expected results for logarithmic
    correction with multiplier constant multiplier equal to unity"""
    image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
    expected = np.array([
        [  0,   5,  11,  16,  22,  27,  33,  38],
        [ 43,  48,  53,  58,  63,  68,  73,  77],
        [ 82,  86,  91,  95, 100, 104, 109, 113],
        [117, 121, 125, 129, 133, 137, 141, 145],
        [149, 153, 157, 160, 164, 168, 172, 175],
        [179, 182, 186, 189, 193, 196, 199, 203],
        [206, 209, 213, 216, 219, 222, 225, 228],
        [231, 234, 238, 241, 244, 246, 249, 252]], dtype=np.uint8)

    result = exposure.adjust_log(image, 1)
    assert_array_equal(result, expected)


def test_adjust_inv_log():
    """Verifying the output with expected results for inverse logarithmic
    correction with multiplier constant multiplier equal to unity"""
    image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
    expected = np.array([
        [  0,   2,   5,   8,  11,  14,  17,  20],
        [ 23,  26,  29,  32,  35,  38,  41,  45],
        [ 48,  51,  55,  58,  61,  65,  68,  72],
        [ 76,  79,  83,  87,  90,  94,  98, 102],
        [106, 110, 114, 118, 122, 126, 130, 134],
        [138, 143, 147, 151, 156, 160, 165, 170],
        [174, 179, 184, 188, 193, 198, 203, 208],
        [213, 218, 224, 229, 234, 239, 245, 250]], dtype=np.uint8)

    result = exposure.adjust_log(image, 1, True)
    assert_array_equal(result, expected)


# Test Sigmoid Correction
# =======================

@pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
def test_adjust_sigmoid_1x1_shape(dtype):
    """Check that the shape is maintained"""
    img = np.ones([1, 1], dtype=dtype)
    result = exposure.adjust_sigmoid(img, 1, 5)
    assert img.shape == result.shape
    assert result.dtype == dtype


def test_adjust_sigmoid_cutoff_one():
    """Verifying the output with expected results for sigmoid correction
    with cutoff equal to one and gain of 5"""
    image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
    expected = np.array([
        [  1,   1,   1,   2,   2,   2,   2,   2],
        [  3,   3,   3,   4,   4,   4,   5,   5],
        [  5,   6,   6,   7,   7,   8,   9,  10],
        [ 10,  11,  12,  13,  14,  15,  16,  18],
        [ 19,  20,  22,  24,  25,  27,  29,  32],
        [ 34,  36,  39,  41,  44,  47,  50,  54],
        [ 57,  61,  64,  68,  72,  76,  80,  85],
        [ 89,  94,  99, 104, 108, 113, 118, 123]], dtype=np.uint8)

    result = exposure.adjust_sigmoid(image, 1, 5)
    assert_array_equal(result, expected)


def test_adjust_sigmoid_cutoff_zero():
    """Verifying the output with expected results for sigmoid correction
    with cutoff equal to zero and gain of 10"""
    image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
    expected = np.array([
        [127, 137, 147, 156, 166, 175, 183, 191],
        [198, 205, 211, 216, 221, 225, 229, 232],
        [235, 238, 240, 242, 244, 245, 247, 248],
        [249, 250, 250, 251, 251, 252, 252, 253],
        [253, 253, 253, 253, 254, 254, 254, 254],
        [254, 254, 254, 254, 254, 254, 254, 254],
        [254, 254, 254, 254, 254, 254, 254, 254],
        [254, 254, 254, 254, 254, 254, 254, 254]], dtype=np.uint8)

    result = exposure.adjust_sigmoid(image, 0, 10)
    assert_array_equal(result, expected)


def test_adjust_sigmoid_cutoff_half():
    """Verifying the output with expected results for sigmoid correction
    with cutoff equal to half and gain of 10"""
    image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
    expected = np.array([
        [  1,   1,   2,   2,   3,   3,   4,   5],
        [  5,   6,   7,   9,  10,  12,  14,  16],
        [ 19,  22,  25,  29,  34,  39,  44,  50],
        [ 57,  64,  72,  80,  89,  99, 108, 118],
        [128, 138, 148, 158, 167, 176, 184, 192],
        [199, 205, 211, 217, 221, 226, 229, 233],
        [236, 238, 240, 242, 244, 246, 247, 248],
        [249, 250, 250, 251, 251, 252, 252, 253]], dtype=np.uint8)

    result = exposure.adjust_sigmoid(image, 0.5, 10)
    assert_array_equal(result, expected)


def test_adjust_inv_sigmoid_cutoff_half():
    """Verifying the output with expected results for inverse sigmoid
    correction with cutoff equal to half and gain of 10"""
    image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
    expected = np.array([
        [253, 253, 252, 252, 251, 251, 250, 249],
        [249, 248, 247, 245, 244, 242, 240, 238],
        [235, 232, 229, 225, 220, 215, 210, 204],
        [197, 190, 182, 174, 165, 155, 146, 136],
        [126, 116, 106,  96,  87,  78,  70,  62],
        [ 55,  49,  43,  37,  33,  28,  25,  21],
        [ 18,  16,  14,  12,  10,   8,   7,   6],
        [  5,   4,   4,   3,   3,   2,   2,   1]], dtype=np.uint8)

    result = exposure.adjust_sigmoid(image, 0.5, 10, True)
    assert_array_equal(result, expected)


def test_is_low_contrast():
    image = np.linspace(0, 0.04, 100)
    assert exposure.is_low_contrast(image)
    image[-1] = 1
    assert exposure.is_low_contrast(image)
    assert not exposure.is_low_contrast(image, upper_percentile=100)

    image = (image * 255).astype(np.uint8)
    assert exposure.is_low_contrast(image)
    assert not exposure.is_low_contrast(image, upper_percentile=100)

    image = (image.astype(np.uint16)) * 2**8
    assert exposure.is_low_contrast(image)
    assert not exposure.is_low_contrast(image, upper_percentile=100)


def test_is_low_contrast_boolean():
    image = np.zeros((8, 8), dtype=bool)
    assert exposure.is_low_contrast(image)

    image[:5] = 1
    assert not exposure.is_low_contrast(image)


# Test negative input
#####################

@pytest.mark.parametrize("exposure_func", [exposure.adjust_gamma,
                                           exposure.adjust_log,
                                           exposure.adjust_sigmoid])
def test_negative_input(exposure_func):
    image = np.arange(-10, 245, 4).reshape((8, 8)).astype(np.float64)
    with pytest.raises(ValueError):
        exposure_func(image)


# Test Dask Compatibility
# =======================

def test_dask_histogram():
    pytest.importorskip('dask', reason="dask python library is not installed")
    import dask.array as da
    dask_array = da.from_array(np.array([[0, 1], [1, 2]]), chunks=(1, 2))
    output_hist, output_bins = exposure.histogram(dask_array)
    expected_bins = [0, 1, 2]
    expected_hist = [1, 2, 1]
    assert np.allclose(expected_bins, output_bins)
    assert np.allclose(expected_hist, output_hist)
    assert isinstance(output_hist, da.Array)


def test_dask_rescale():
    pytest.importorskip('dask', reason="dask python library is not installed")
    import dask.array as da
    image = da.array([51, 102, 153], dtype=np.uint8)
    out = exposure.rescale_intensity(image)
    assert out.dtype == np.uint8
    assert_array_almost_equal(out, [0, 127, 255])
    assert isinstance(out, da.Array)
