U
    !?h<  ã                   @   sV   d dl Zd dlZd dlmZ edddddd„ ƒZeddddd	d
„ ƒZddd„ZdS )é    N)Únjitzf8[:, :](f8[:, :], f8)T)ÚcacheZnogilc                 C   sn   | j \}}t ||f¡}t|ƒD ]H}t|ƒD ]:}t t |¡ t t | | | |  ¡¡ ¡|||f< q,q |S )N)ÚshapeÚnpÚzerosÚrangeÚexpÚsqrtÚsumZsquare)ÚXÚvÚnÚmÚKÚiÚj© r   úT/var/www/html/venv/lib/python3.8/site-packages/pymatting/laplacian/lbdm_laplacian.pyÚcalculate_kernel_matrix   s    
:r   z1Tuple((f8[:], i4[:], i4[:]))(f8[:, :, :], f8, i4)c              	   C   s  | j d d… \}}|| }d| d d }t |¡ ||¡}t ||d f¡}tj||d ftjd}	tj||d ftjd}
t||| ƒD ]b}t||| ƒD ]L}|||  }t |df¡}d}t|| || d ƒD ]N}t|| || d ƒD ]2}tdƒD ]}| |||f |||f< q |d7 }qôqÚ||| || d …|| || d …f  ¡ }t 	||j
¡}tj ||t |¡  |¡}t |j d ¡| }| 	|j
¡}t|ƒD ]4}||	||d |…f< ||
||| || | …f< q¬| ¡ ||< q qŒ| ¡ |	 ¡ |
 ¡ fS )Né   é   )Zdtypeé   r   é   )r   r   ZarangeZreshaper   Zint32r   ZonesÚflattenÚdotÚTZlinalgZsolveÚeyeZravel)ÚimageÚepsilonÚrÚhÚwr   ZareaÚindicesÚvaluesÚi_indsÚj_indsÚyÚxr   r   ÚkÚy2Zx2ÚcZwindow_indicesr   ÚfZtmp2Ztmp3r   r   r   Ú_lbdm_laplacian   s6    0 r,   çH¯¼šò×z>r   c           
      C   sL   | j dd… \}}|| }t| ||ƒ\}}}tjj|||ff||fd}	|	S )a&  
    Calculate a Laplacian matrix based on :cite:`zheng2009learning`.

    Parameters
    ----------
    image: numpy.ndarray
       Image with shape :math:`h\times w \times 3`
    epsilon: float
       Regularization strength, defaults to :math:`10^{-7}`. Strong
       regularization improves convergence but results in smoother alpha mattes.
    radius: int
       Radius of local window size, defaults to :math:`1`, i.e. only adjacent
       pixels are considered. The size of the local window is given as
       :math:`(2 r + 1)^2`, where :math:`r` denotes the radius. A larger radius
       might lead to violated color line constraints, but also favors further
       propagation of information within the image.

    Returns
    -------
    L: scipy.sparse.csr_matrix
        Matting Laplacian
    Nr   )r   )r   r,   ÚscipyÚsparseZ
csr_matrix)
r   r   Zradiusr    r!   r   r#   r$   r%   ÚLr   r   r   Úlbdm_laplacian@   s
    r1   )r-   r   )	Únumpyr   Zscipy.sparser.   Znumbar   r   r,   r1   r   r   r   r   Ú<module>   s   
	
0