U
    !?h                     @   s@   d dl Zd dlZd dlmZ edddddd Zdd
dZdS )    N)njitz>void(f8[:, :, :], f8, i8, f8[:, :, :], i8[:], i8[:], b1[:, :])T)cacheZnogilc           3      C   s  | j \}}}	|	dkstd| d }
|
|
 }t|D ]}t|D ]}|||  }|d| d d  }t|d|  |d|  d D ]t}t|d|  |d|  d D ]P}|||  }d|  kr|k rn n d|  kr|k rn n|||< |d7 }qq|||d < q@q4td| d d| d df}t||| D ]}t||| D ]}t||| || d || || d f rqJtdD ]}d}t|
D ]8}t|
D ](}|| || | || | |f 7 }qqtd| d D ]N}td| d D ]6}| || | || | |f ||  ||||f< qqq|}d}d}|}d}|}t|
D ]}t|
D ]}||||df |||df  7 }||||df |||df  7 }||||df |||df  7 }||||df |||df  7 }||||df |||df  7 }||||df |||df  7 }qjq^|| }|| }|| }|| }|| }|| }|| | || |  || |  || |  d| | |  } d|  }!|| ||  |! }"|| ||  |! }#|| ||  |! }$|| ||  |! }%|| ||  |! }&|| ||  |! }'td| d D ]}(td| d D ]z})||(|)df }||(|)df }*||(|)df }+|"| |#|*  |$|+  },|#| |%|*  |&|+  }-|$| |&|*  |'|+  }.td| d D ]}/td| d D ]}0||) | }||( | }||0 | }||/ | }|||  }|||  }|,||/|0df  |-||/|0df   |.||/|0df   }1||krxdndd|1 |  }2|| d|  }|| d|  }||||f  |27  < qqԐqLq6qJq6d S )N            r   g        g      ?)shapeAssertionErrorrangenpzerosall)3imageepsilonrvaluesindicesindptris_knownhwdsizeZwindow_areayixiikZyjZxjjcyxZdcsZdyZdxZa00Za01Za02Za11Za12Za22ZdetZinv_detZm00Zm01Zm02Zm11Zm12Zm22ZdyiZdxituZc0c1c2ZdyjZdxjtempvalue r(   R/var/www/html/venv/lib/python3.8/site-packages/pymatting/laplacian/cf_laplacian.py_cf_laplacian   s    ""0 4*$     (



r*   Hz>r   c                 C   s   | j \}}}|| }|dkr0tj||ftjd}|||}tj|d tjd}tj|d| d d  tjd}	tj|d| d d| d ftjd}
t| |||
|	|| tj	
|
 |	|f||f}|S )a  
    This function implements the alpha estimator for closed-form alpha matting
    as proposed by :cite:`levin2007closed`.

    Parameters
    ----------
    image: numpy.ndarray
       Image with shape :math:`h\times w \times 3`
    epsilon: float
       Regularization strength, defaults to :math:`10^{-7}`. Strong
       regularization improves convergence but results in smoother alpha mattes.
    radius: int
       Radius of local window size, defaults to :math:`1`, i.e. only adjacent
       pixels are considered.
       The size of the local window is given as :math:`(2 r + 1)^2`, where
       :math:`r` denotes         the radius. A larger radius might lead to
       violated color line constraints, but also
       favors further propagation of information within the image.
    is_known: numpy.ndarray
        Binary mask of pixels for which to compute the laplacian matrix.
        Laplacian entries for known pixels will have undefined values.

    Returns
    -------
    L: scipy.sparse.spmatrix
        Matting Laplacian
    N)Zdtyper   r   r   )r   r   r   Zbool_ZreshapeZint64Zfloat64r*   scipysparseZ
csr_matrixZravel)r   r   Zradiusr   r   r   r   nr   r   r   Lr(   r(   r)   cf_laplacian   s     &r0   )r+   r   N)numpyr   Zscipy.sparser,   Znumbar   r*   r0   r(   r(   r(   r)   <module>   s
   
~