U
    !?h                     @   sl   d dl Zd dlmZmZ eddddddd Zedddddd	d
 Zedddddd ZdddZdS )    N)njitprangezvoid(f4[:, :, :], f4[:, :, :])T)cachenogilparallelc                 C   s   |j \}}}| j \}}}t|D ]p}t|D ]b}tdt|d || | }	tdt|d || | }
t|D ]}||
|	|f | |||f< qpq,q dS )aB  
    Internal method.

    Resize image src to dst using nearest neighbors filtering.
    Images must have multiple color channels, i.e. :code:`len(shape) == 3`.

    Parameters
    ----------
    dst: numpy.ndarray of type np.float32
        output image
    src: numpy.ndarray of type np.float32
        input image
    r      Nshaper   rangemaxmin)dstsrch_srcw_srcdepthh_dstw_dsty_dstx_dstx_srcy_srcc r   ]/var/www/html/venv/lib/python3.8/site-packages/pymatting/foreground/estimate_foreground_ml.py_resize_nearest_multichannel   s    r   zvoid(f4[:, :], f4[:, :])c           
      C   s   |j \}}| j \}}t|D ]^}t|D ]P}tdt|d || | }tdt|d || | }	||	|f | ||f< q(qdS )a2  
    Internal method.

    Resize image src to dst using nearest neighbors filtering.
    Images must be grayscale, i.e. :code:`len(shape) == 3`.

    Parameters
    ----------
    dst: numpy.ndarray of type np.float32
        output image
    src: numpy.ndarray of type np.float32
        input image
    r   r   Nr   )
r   r   r   r   r   r   r   r   r   r   r   r   r   _resize_nearest    s    

r   zLTuple((f4[:, :, :], f4[:, :, :]))(f4[:, :, :], f4[:, :], f4, i4, i4, i4, f4))r   r   c           4      C   sx  | j \}}}	tj}
d}d}tj|	|
d}tj|	|
d}d}d}t|D ]}t|D ]}|||f dkrt|	D ]}||  | |||f 7  < qn|d7 }|||f dk rRt|	D ]}||  | |||f 7  < q|d7 }qRqF||d  }||d  }tj|||	f|
d| }tj|||	f|
d| }tttt||}t|d D ]$}t	|||  }t	|||  }tj
|||	f|
d}tj
||f|
d}t||  t|| tj
|||	f|
d}tj
|||	f|
d}t|| t|| ||kr||kr|}n|}tjd|	f|
d}ddddg} ddddg}!t|D ]$}"t|D ]}t|D ] }|||f }#d	|# }$|#|# }%|#|$ }&|$|$ }'t|	D ]:}|#||||f  |d|f< |$||||f  |d|f< qtd
D ]}(tdt|d || |(  })tdt|d ||!|(  }*t|#||*|)f  }+|||+  },|%|,7 }%|'|,7 }'t|	D ]J}|d|f  |,||*|)|f  7  < |d|f  |,||*|)|f  7  < qBq|%|' |&|&  }-d	|- }.|.|' }/|.|&  }0|.|% }1t|	D ]}|/|d|f  |0|d|f   }2|0|d|f  |1|d|f   }3tdtd	|2}2tdtd	|3}3|2||||f< |3||||f< q̐qPqBq4|}|}|}|}qH||fS )Nr   )dtyper   g?g?h㈵>         ?   g        )r	   npfloat32Zzerosr
   intceillog2r   roundemptyr   r   r   r   abs)4Zinput_imageZinput_alpharegularizationn_small_iterationsn_big_iterations
small_sizegradient_weightZh0Zw0r   r   Zw_prevZh_prevZF_mean_colorZB_mean_colorZF_countZB_countyxr   ZF_prevZB_prevZn_levelsZi_levelwhimagealphaFBZn_iterbZdxZdyZi_iterZa0Za1Za00Za01Za11dZx2y2ZgradientdaZdeterminantZinv_detZb00Zb01Zb11ZF_cZB_cr   r   r   _estimate_fb_ml=   s    




"*
  r<   r   
   r       Fr!   c           
      C   s8   t | tj|tj|||||\}}	|r4||	fS |S )a  Estimates the foreground of an image given its alpha matte.

    See :cite:`germer2020multilevel` for reference.

    Parameters
    ----------
    image: numpy.ndarray
        Input image with shape :math:`h \times  w \times d`
    alpha: numpy.ndarray
        Input alpha matte shape :math:`h \times  w`
    regularization: float
        Regularization strength :math:`\epsilon`, defaults to :math:`10^{-5}`.
        Higher regularization results in smoother colors.
    n_small_iterations: int
        Number of iterations performed on small scale, defaults to :math:`10`
    n_big_iterations: int
        Number of iterations performed on large scale, defaults to :math:`2`
    small_size: int
        Threshold that determines at which size `n_small_iterations` should be used
    return_background: bool
        Whether to return the estimated background in addition to the foreground
    gradient_weight: float
        Larger values enforce smoother foregrounds, defaults to :math:`1`

    Returns
    -------
    F: numpy.ndarray
        Extracted foreground
    B: numpy.ndarray
        Extracted background

    Example
    -------
    >>> from pymatting import *
    >>> image = load_image("data/lemur/lemur.png", "RGB")
    >>> alpha = load_image("data/lemur/lemur_alpha.png", "GRAY")
    >>> F = estimate_foreground_ml(image, alpha, return_background=False)
    >>> F, B = estimate_foreground_ml(image, alpha, return_background=True)

    See Also
    --------
    stack_images: This function can be used to place the foreground on a new background.
    )r<   Zastyper#   r$   )
r4   r5   r+   r,   r-   r.   Zreturn_backgroundr/   
foreground
backgroundr   r   r   estimate_foreground_ml   s    6


rA   )r   r=   r   r>   Fr!   )	numpyr#   Znumbar   r   r   r   r<   rA   r   r   r   r   <module>   s   


      